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Abstract: Polyglutamine �-sheet aggregates are associ-
ated with the derangement of Huntington’s disease. The
effect of cooperativity of the H-bond network formed by
both backbone and side chain groups is expected to be
important for the structure and energetics of the ag-
gregates. So far, no direct description and/or quantification
of the effect is yet available. By performing DFT and hybrid
DFT/MM simulations of polyglutamine �-sheet structures
in vacuo and in aqueous solution, we observe that the
cooperativity of glutamine side chains affects both the
directions perpendicular and parallel to the backbone. This
behavior is not usually observed in � sheets and may
provide significant extra-stabilization together with explain-
ing some of the unique properties of polyglutamine
aggregation.

Huntington’s and other neurodegenerative diseases depend
on the abnormal expansion of polyglutamine (polyQ) tracts in
proteins which form aggregates rich in � sheets associated with
neurodegeneration.1-6 The glutamine side chain is similar to
the backbone unit. Thus, polyQ tracts can form particular �
strands stabilized by a hydrogen bond (HB) net involving both
the backbone and the side chains.5-7 The presence of a

cooperative effect (CE) on this peculiar HB net may play a role
in the misfolding and aggregation of polyQ.5 The CE in
hydrogen bonding is very important for both the structure and
the energetics of polypeptide systems.8

The extra-structural stability of polyQ aggregates due to the
CE is related to the number of HBs formed between the
backbone and side chains.9 Nevertheless, the conclusions so far
were achieved by classical molecular dynamics calculations that
cannot answer the critical issue of how to deal with electronic
polarizability. This can be described by first principle methods,
which have in fact already been applied in the study of CE on
polypeptides, including polyQ chains.10-18 However, the crucial
role of Q side chain HBs on the CE has not been investigated
so far by first principles approaches.

Here, we perform first principles DFT-PBE19-21 calculations
on polyQ peptides of increasing complexity, assembled in
parallel � sheets (Table 1), a structure well characterized from
biochemical and theoretical studies [CE turns out to be stronger
in parallel � sheets (like the systems considered here) than in
antiparallel ones22].14,22-24 Our models (N × n hereafter)
differed from each other for the number of strands (N ) 1, 2,
3, 4) and/or for the number of Qs in each strand (n ) 1, 2, 3,
4) [the models were built using the HyperChem 8.0 program25].
They are terminated by the addition of -NCH3 and -OCCH3

groups. The resulting 16 models range from 29 to 320 atoms
(Table 1, see the footnote for more details on notations). Next,
because of the obvious role of solvent and temperature effects
on polypeptide conformation,13 we performed 2 ps of hybrid
DFT/MM molecular dynamics calculations on a large system,
a �-helix nanotube (8 turns of 20 Q, see Figure S1 in the
Supporting Information) in aqueous solution.29-32 [The structure
is characterized by Q residues with � and ψ angles of -162
and 159°.26 Its coordinates were kindly provided by Dr. A. Lesk.
Although R helices have a low probability of forming in vivo
with respect to other Q structures, 27,28 they have been
investigated here because (1) they have been already investigated
by classical MD by us9 and (2) we provide a qualitative
description CE, independently from the peculiarity of these
conformations. Quantitative predictions, which would require
an investigation on a variety of structures proposed, are beyond
the scope of the present investigation.]

Taken together, our calculations suggest that the CE is
manifested both by the shortening of HB lengths, increasing
the number of HBs involved (structural aspect) and by the
energy stabilization of H-bonded peptides with respect to
the isolated ones (energetic aspect): We are going to detail in
the following some of the crucial features of our results.
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Finally, to prove that such cooperative effects are due only
to the peculiarity of polyQ chains, we also considered, as a
control study (a) series of models where we varied the initial Q
side chain conformations and (b) series of models built with
polyalanine.

Structural Aspects. CE on a �-sheet system may be present
in patterns perpendicular to the peptide elongation (⊥CE) or
parallel to it (|CE, Figure 1A).18

1. The ⊥CE is manifested (a) by a decrease of HB length
with an increasing number of piling strands, and (b) by HBs at
the center of the pile shorter than in the rim.18,22

In all the series considered, HB distances decreased with an
increasing number of piling strands in both the backbone and
the side chains (effect a in Figure 1B,C).

In addition, HB lengths turned out to be shorter at the center
of H-bonded chains than at the rim, in the case where at least
three HBs are piled up in the perpendicular direction (N ) 4;
effect b in Figures 2-4A and Figure S2, Supporting Informa-
tion). This feature was observed both for the side chains (Figure
2) and the backbone (Figures 3, 4A, S2).

For the backbone, the trend was however observed only when
taking averages: the inner HBs turned out not always to be the
shortest of the column (Figure 3) [with the term “column”, we
indicate the HB chain in the perpendicular direction]. This fact

can be explained, at least in part, by the polarization of the
dipoles associated with the HB functionalities (CdO · · ·N-H)
of both the backbone and side chains. It has been already
observed that the backbone dipoles along the same column of
� strands have the same orientations (in contrast to those of the
adjacent column) and can therefore sum up increasing the
polarization of the systems.22 However, in the case of polyQ
�-strands, the glutamine side chains counterbalance this polar-
ization, affecting the inner HBs (Figure 3). Therefore, in the
columns where the HB dipole orientations were enhanced by
similar side chain HB dipole orientations, a CE is presentsthe
shorter HB was the one in the center of the column; on the
other hand, when neighboring side chain columns had HB
dipoles oriented in opposite directions (with respect to the
column considered), the inner HB was not the shortest of the
column (Figure 3).

To prove this conclusion, we perform the same calculations
on the N × 3 polyQ series varying the side chain conformations
(N × 3SC hereafter). Here, glutamine side chains are twisted in
such a way they are not able to establish HBs; thus only
backbone HBs are present. As expected, we found both types
of ⊥CE (effects a and b). However, remarkably, ⊥CE-type b is
not affected by side chain HB dipole orientations due to the
absence of side-chain HBs. Thus, backbone HB lengths turned

Table 1. polyQ Peptides of Increasing Complexity, Assembled in Parallel � Sheetsa

a Each system studied here is defined in terms of the n and N integers, ranging from 1 to 4. The first number counts the Qs in each
strand. It defines a group of four systems, each with the same number of Qs per strand, but with a different number of strands (a “series”).
The second counts the strands in each system. Thus, N × 4 indicates systems formed by peptides of 4 Qs (1 × 4, 2 × 4, 3 × 4, 4 × 4), N
× 3 those formed by 3 Qs (1 × 3, 2 × 3, 3 × 3, 4 × 3), N × 2 those formed by 2 Qs (1 × 2, 2 × 2, 3 × 2, 4 × 2), and N × 1 those made
up of only 1 Q (1 × 1, 2 × 1, 3 × 1, 4 × 1). We built also two other, different N × 3 series: (A) the N × 3SC polyQ series where we varied
the side chain conformations and (B) N × 3ALA. This is a polyalanine system.
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out to be shorter at the center of H-bonded chains than at the
rim, in each single columns considered, not only taking the
average (Figure S3 and Table S2, Supporting Information).

According to this, we have similar results also for N × 3ALA,
where there is no possibility for the alanine to form side chain
HBs (Figure S3 and Table S2, Supporting Information). Indeed,

we found only a ⊥CE of type b: HB lengths are shorter at the
center of H-bonded chains than at the rim, in the case where at
least three HBs are piled up in the perpendicular direction (N
) 4; Figure S3).

2. We observed a |CE as reflected from shortening of the
central HB lengths between two adjacent strands.18 |CE is

Figure 1. (A) Parallel (|) and perpendicular (⊥) directions of peptides elongation. (B, C) Structural aspects of CE: (B) Backbone
CE (⊥CE-effect a): mean values of HB lengths of the backbone atoms versus the number of strands for each series of n Q. (C)
Side chain CE (⊥CE-effect a): mean values of HB lengths for the side chain atoms versus the number of strands for each series
of n Q.

Figure 2. ⊥CE-effect b, in the Q side chains: systems 4 × 4, 4 × 3, 4 × 2, and 4 × 1. HB length versus HB position.
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usually not present in �-sheets because of the alternative
orientation of backbone HB dipoles along the strands (Figure
1A).18,33,34 However, the dipoles associated with the Q side
chains add up in a coherent way for the central HBs between
two strands (position 2 in N × 2 series; positions 2 and 3 in N

× 3 series; positions 2, 3, and 4 in N × 4 series). As a result,
the latter turned out to be shorter than those of the rim (Figure
1B). We performed the same calculation on the N × 3SC

systems, where there is not a contribution of side chains’ HB.
As expected, no |CE is found (Figure S4a, Supporting Informa-

Figure 3. ⊥CE-effect b in system 4 × 4. (A) In the histograms: HB length of backbone for different positions inside each strand
as a function of the position across the different strands. The color of the histogram corresponds to the HBs circled on the
top-left picture. The black line represents the mean values over the rows. (B) Orientation of the dipoles associated with the HBs
for 4 × 4 (4 × 3, 4 × 2, and 4 × 1 treated in Supporting Information, Figure S2).

Figure 4. (A) Backbone CE in the direction perpendicular to strand elongation (⊥CE-effect b): systems 4 × 3, 4 × 2, and 4 ×
1. In the histograms: HB length for each column (the position along the strand) versus the HB position (the position perpendicular
to the strand direction). The black line represents the mean values over the rows. (B) Backbone |CE: series N × 2, N × 3, and
N × 4. HB length versus HB position.
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tion). These results point to the relevance of glutamine side
chains for the structure of polyQ systems.

To confirm that such cooperative effects are specific only
for polyQ and not a general feature of polypeptide chains, we
performed a control study also on a series (N × 3ALA) of
polyalanine systems (Table S2, Supporting Information). As
expected, no |CE or ⊥CE type a was found (Figure S4 b,
Supporting Information).

Similar conclusions can be drawn by our hybrid QM/MM
calculations of the circular �-helix of the polyQ chain, in which
the QM region corresponds to 4 × 4, 4 × 3, and 3 × 4, and the
rest of the polyQ tracts as well as the water molecules were
included in the MM region (∼45 000 atoms). These systems
were labeled as 4 × 4MIX, 4 × 3MIX, and 3 × 4MIX. Although
the trend of HB lengths in the first two systems qualitatively
resembled that of the corresponding in Vacuo models, we have
to remark that the HB lengths were larger (Table S3 and Figure
S5, Supporting Information). Moreover, the side chains formed
mostly HB with the solvent. These differences are probably due
to the presence of the solvent and to temperature effects, which
are completely neglected in the in Vacuo calculations. [We
further notice that, because of the very short time-scale of our
QM/MM simulation, our structural parameters may also not have
reached equilibration.] No CE was observed in the last system
(3 × 4MIX), possibly because of the small number of strands.

Energetic Aspects. The stabilization energy associated with
the formation of HBs between the different strands of the
systems in Vacuo is calculated as follows. [Unfortunately, the
stabilization associated with the addition of a Q unit starts with
the fourth amino acid unit, 11 so it cannot be investigated here.
In fact, the number of amino acids in our systems is never
greater than four. This issue must be addressed in a further
study.] First, we define the stabilization energy per strand (∆EN)
as the energy associated with the addition of the Nth Q strand
to the QN-1 (EN×n), minus the formation energy of the N isolated
strand.

EN×n is the energy of a system belonging to the n series and
containing N strands; E1×n is the energy associated with an
isolated polyQ strand with n glutamines. This is the formation
energy of a strand constituted by n glutamines free from long-
range effects (i.e., isolated non-interactive strand).

The stabilization energy per hydrogen bond (∆EHB) was then
defined by dividing ∆EN by the number of hydrogen bonds (nHB)
in each system.

∆EHB decreased nonlinearly with the number of strands
(Figure 5): the variation of ∆EHB in each series is ∼0.8 kcal/
mol, passing from two-strand systems to four-strand systems.
This quantity is smaller than the typical DFT-PBE error.35

However, here, we consider differences of energies in similar
systems; thus we can reasonably assume that fortuitous error
cancellation errors may increase the accuracy of our calculations.
∆EHB ranged from -5.0 kcal/mol in the smallest system to -6.5
kcal/mol in the larger system (4 × 4), suggesting that a CE

effect exists and that for the present systems this is a maximum
of 1.5 kcal/mol per HB.

As expected, the stabilization energy depending on CE is
smaller for polyA systems with respect to the polyQ, clearly
for the absence of side chain HB stabilization. According to
this hypothesis, if we compute the CE for the N × 3SC series,
where the glutamine side chains are not able to form HBs, we
find results comparable with the polyA ones (Table S5,
Supporting Information).

In summary, we found that (1) both parallel and perpendicular
CEs affect the geometry of polyQ � strands because of the key
role of the Q side chains; (2) the formation of cooperative
hydrogen bonds stabilized multiple polyQ �-sheet strands with
respect to a single isolated strand; (3) within the limitations of
the calculations on a single �-stranded structure in a water
solution, we suggest that environmental effects on hydrogen
bonding CE affects only the magnitude of CE, while the
qualitative trend is the same as that found in the in Vacuo
calculation.

Acknowledgment. A.P. acknowledges funding from MRC
(grant No U117584256).

Supporting Information Available: (1) Methods: DFT
and DFT/MM calculations. (2) Figure S1, circular �-helix. (3)
Figure S2, HB dipole orientations in (a) 4 × 3, (b) 4 × 2, and
(c) 4 × 1. (4) Figure S3, (a) backbone CE (⊥CE-effect a) in
system 4 × 3SC and system 4 × 3ALA, mean values of HB
lengths of the backbone atoms versus the number of strands
for each series of n Q; (b) backbone CE (⊥CE-effect b) in the
direction perpendicular to strand elongation: system 4 × 3SC,
system 4 × 3ALA. In the histograms: HB length for each column
(the position along the strand) versus the HB position (the
position perpendicular to the strand direction); the black line
represents the mean values over the rows. (5) Figure S4,
backbone |CE: Series N × 3SC, N × 3ALA. HB length versus
HB position. (6) Figure S5, backbone CE in the direction
perpendicular to strand elongation: (a) system 4 × 4MIX, (b)
system 4 × 3MIX. In the histograms: HB length for each column
(the position along the strand) versus the HB position (the
position perpendicular to the strand direction); the black line
represent the mean values over the rows. (7) Table S1, lengths
of HBs in backbone and side chains for all the systems studied

∆EN ) EN×n - N·E1×n

∆EHB ) ∆EN/nHB

Figure 5. Stabilization energy per hydrogen bond (∆EH) for
the addition of an Nth Q strand to the QN-1. The gradual
change of ∆EH versus the number of strands showed that
the strength of the HBs between layers increases nonlinearly
with the number of strands.
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with DFT in Vacuo. (8) Table S2, lengths of HBs in the
backbone: series N × 3SC, N × 3ALA. (9) Table S3, lengths of
HBs in the backbone obtained with DFT/MM MD. (10) Table
S4, energies obtained from the DFT calculation in Vacuo. (11)
Table S5, energies obtained from the DFT calculations in Vacuo
for series N × 3SC, N × 3ALA. This material is available free of
charge via the Internet at http://pubs.acs.org.
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Abstract: The mechanism of solvent effects on the stereoselectivity of glycosylation reactions
is investigated using quantum-mechanical (QM) calculations and molecular dynamics (MD)
simulations, considering a methyl-protected glucopyranoside triflate as a glycosyl donor
equivalent and the solvents acetonitrile, ether, dioxane, or toluene, as well as gas-phase
conditions (vacuum). The QM calculations on oxacarbenium-solvent complexes do not provide
support to the usual solvent-coordination hypothesis, suggesting that an experimentally observed
�-selectivity (R-selectivity) is caused by the preferential coordination of a solvent molecule to
the reactive cation on the R-side (�-side) of the anomeric carbon. Instead, explicit-solvent MD
simulations of the oxacarbenium-counterion (triflate ion) complex (along with corresponding QM
calculations) are compatible with an alternative mechanism, termed here the conformer and
counterion distribution hypothesis. This new hypothesis suggests that the stereoselectivity is
dictated by two interrelated conformational properties of the reactive complex, namely, (1) the
conformational preferences of the oxacarbenium pyranose ring, modulating the steric crowding
and exposure of the anomeric carbon toward the R or � face, and (2) the preferential coordination
of the counterion to the oxacarbenium cation on one side of the anomeric carbon, hindering a
nucleophilic attack from this side. For example, in acetonitrile, the calculations suggest a dominant
B2,5 ring conformation of the cation with preferential coordination of the counterion on the R
side, both factors leading to the experimentally observed � selectivity. Conversely, in dioxane,
they suggest a dominant 4H3 ring conformation with preferential counterion coordination on the
� side, both factors leading to the experimentally observed R selectivity.

1. Introduction

In recent years, the investigation of the nature, structure, and
function of carbohydrates present in biological systems has
received increased interest, especially in the context of

glycoscience and chemical biology.1,2 A major obstacle in
the characterization of biologically relevant carbohydrates
is the limited availability of pure and structurally well-defined
sugar materials; i.e., sugars are usually found in low
concentrations and/or in microheterogeneous forms. So far,
synthetic chemistry still represents the main access route to
oligosaccharides and glycoconjugates with rigorously defined
chemical structures.

One of the cornerstones of carbohydrate synthesis is the
glycosylation reaction, which involves a glycosyl donor

* Corresponding authors. E-mail: hsatoh@nii.ac.jp (H.S.);
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(electrophile) to be coupled with a glycosyl acceptor (nu-
cleophile) and is promoted by a suitable activator (Figure
1). The exocyclic hydroxyl groups of the donor and of the
acceptor that are not involved in the coupling are typically
either functionalized or rendered nonreactive by means of
protecting groups, while the anomeric carbon (C1) of the
donor is functionalized by a leaving group to be substituted
by the acceptor. The role of the activator is to assist the
departure of this leaving group. Typical leaving groups are
imidates, sulfur compounds (thiolates, sulfonates, sulfates),
and halogenates. The most common activators are salts of
trifluoromethanesulfonate (triflate; OTf-) and a combination
of trifluoromethanesulfonate salts with a chalcogen halide.
The reaction creates a glycosidic linkage and induces a new
chirality at the anomeric carbon. The products usually consist
of a mixture of the two possible stereoisomers, i.e., the R-
or �-linkage anomers as defined by IUPAC conventions.3

Although stereoselective synthetic technologies for oligosac-
charides and glycoconjugates have made considerable progress
in recent years, including the development of polymer-
supported and solid-phase synthesis methodologies,4-12 a
high stereoselectivity is still often difficult to achieve. Since
sugar materials that are contaminated with undesirable or
indeterminable stereoisomers are less suitable for biological
studies, further development of synthetic approaches to
control the stereoselectivity of glycosylation reactions is an
area of very active research.

Many factors influence the stereoselectivity of a glyco-
sylation reaction, including the choices of the glycosyl donor,
leaving group, protecting groups, acceptor, activation system,
and solvent, as well as the temperature. Great efforts have
been made to gain an understanding of the mechanism of
glycosylation reactions and of the relationship between these

factors and the resulting stereoselectivity, in particular Via
synthetic experiments13-39 and theoretical methods.40-56

The reaction mechanism for typical pyranosides is gener-
ally assumed to be of the SN1 type (Figure 1), with a ratio
of products under kinetic (rather than thermodynamic) control
and transition barriers of a predominantly enthalpic (rather
than entropic) nature. This mechanism involves as a first step
the (activator assisted) departure of the leaving group (L-)
and the formation of an oxacarbenium cation intermediate
(R+).19 This cation benefits from an enhanced stability
compared to, e.g., an aliphatic carbocation, generally at-
tributed to the delocalization of the positive charge at the
anomeric carbon onto the neighboring ring oxygen atom. For
the low to medium polarity organic solvents typically used
in glycosylation reactions, a counterion is likely to stay more
or less tightly coordinated to this cation. This counterion may
be the anionic leaving group L- or another type of anion
A- present in the reaction medium. In this case, the reactive
species will be an oxacarbenium-counterion complex in-
termediate [R+; L-] or [R+; A-]. For example, in the
common situation where triflate anions are present, the
predominant reactive species will be an oxacarbenium-triflate
complex intermediate [R+; OTf-], which is known as a high
reactive glycosylation donor equivalent.15,17,20,21,23,24,28,32 In
a second step, a nucleophile (NuH), typically an alcohol
molecule, attacks the anomeric carbon of the intermediate
species to form a glycosidic linkage. The nucleophile may
attack the oxacarbenium cation from either the R or the �
side, resulting in the formation of either of the two corre-
sponding anomers.

The nature of the solvent is known to represent a key factor
in the stereoselectivity of glycosylation reactions.57-67 For
glucopyranosides, for example, the 1,2-cis-glucoside (R

Figure 1. Generic reaction mechanism of a glycosylation reaction, in a solution containing a specific anion. Top: glycosylation
involving a protected pyranoside donor, an alcohol acceptor, and triflate anions in solution. Bottom: generalized version, involving
an arbitrary glycosyl donor (RL), an arbitrary nucleophile (NuH), and an arbitrary counterion type (A-).
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linkage) is predominantly formed in diethyl ether or in 1,4-
dioxane, whereas in acetonitrile, the 1,2-trans-glucoside (�
linkage) is the major product. The same trend is typically
also observed for other pyranosides, namely, that the
R-anomer is predominantly formed in ether or dioxane,
whereas the �-anomer is predominantly produced in aceto-
nitrile. The solvent effect dominates the stereoselectivity as
long as there is no participating effect of neighboring groups
(e.g., participation of a 2-acyl protecting group in the donor,
predominantly leading to a 1,2-trans-glycosidic linkage
irrespective of the solvent35).

Some examples from the literature61,64 demonstrating these
solvent effects, along with the results of experiments carried
out specifically for the present study, are summarized in

Table 1 (see also the Supporting Information). Entries 1-461

show that the stereoselectivity is essentially insensitive to
the anomeric configuration of the glycosyl donor, i.e., to the
orientation of the leaving group prior to the reaction,
providing support for the general assumption of a SN1 type
glycosylation mechanism. These reactions also evidence a
clear �-selectivity in acetonitrile and R-selectivity in ether.
Entries 5-864 correspond to reactions on a poly(ethylene
glycol)methyl ether (PEG) polymer support. Here, the
R-stereoselectivity observed for an ether/dichloromethane
mixture does not differ significantly from that found in
solvents usually having little influence on the stereoselectivity
(toluene and dichloromethane). However, the acetonitrile/
dichloromethane mixture presents a higher proportion of the

Table 1. Experimental Results Concerning the Stereoselectivity of Glycosylation Reactions (Figure 1) in Different Solvents
(or Solvent Mixtures)a

a Entries 1-8 are reported from the literature.61,65 Entries 9-14 correspond to experiments carried out specifically for the present study
(see Supporting Information for experimental details).
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�-product, albeit no net �-stereoselectivity. Finally, entries
9-14 (experiments carried out for the present study)
evidence a clear �-stereoselectivity in acetonitrile and in an
acetonitrile/dioxane mixture (as well as in toluene). The
proportion of the R product is higher in ether and in a
dioxane/toluene mixture (as well as in dichloromethane),
although no net R-stereoselectivity is observed. Bearing in
mind that the stereoselectivity of glycosylation reactions is
affected by many other factors (besides solvent effects), the
results presented in Table 1, along with those of other
studies,57-67 suggest a general trend toward �-selectivity in
acetonitrile, a general trend toward R-selectivity in ether and
dioxane, and little (or nonsystematic) selectivity trends in
dichloromethane and toluene. Note, however, that when very
reactive donors or high temperatures are considered, the
glycosylation reaction may become diffusion-controlled, in
which case the stereoselectivity may be partly compromised
and solvent effects more complicated.37

A commonly formulated hypothesis for the mechanism
of solvent effects on glycosylation reactions is that a solvent
molecule forms a coordination bond with the anomeric
carbon of the oxacarbenium ion, preferentially on one side
of the ring, thereby blocking the attack by the nucleophile
from the same side (Figure 2a).18 This interpretation will be
referred to here as the solVent coordination hypothesis.
According to this hypothesis, the predominance of the �

product (1,2-trans glycoside) in acetonitrile would result from
the presence of an acetonitrile molecule preferentially
coordinated to the anomeric carbon of the oxacarbenium
cation on the R side of the ring. Conversely, the predomi-
nance of the R product (1,2-cis glycosyde) in ether or dioxane
would result from the presence of a solvent molecule
preferentially coordinated to the � side. The suggestion that
acetonitrile preferentially coordinates to the cation from the
R side is apparently supported by experimental investigations
of nitrium intermediates in glycosylation reactions.62 How-
ever, these mechanistic studies do not take into account the
conformational dynamics of the oxacarbenium cation and
the coordination of the counterion. Besides, there is no
experimental or theoretical evidence in the literature sup-
porting the suggestion of a preferential coordination of ether
or dioxane on the � side.

As will be shown in the present study, quantum-mechan-
ical (QM) calculations on oxacarbenium-solvent interactions
in the gas phase and in implicit solvent as well as classical
molecular dynamics (MD) simulations of the oxacarbenium
intermediate with a triflate counterion (considering a methyl-
protected glucopyranoside and the above-mentioned solvents)
do not support this hypothesis. Instead, they suggest an
alternative mechanism that will be referred to here as the
conformer and counterion distribution hypothesis (Figure
2b). According to this new hypothesis, the stereoselectivity

Figure 2. Two alternative hypotheses concerning solvent effects in glycosylation reactions: (a) Commonly formulated hypothesis,
referred to here as the solvent coordination hypothesis; (b) alternative hypothesis formulated on the basis of the present study,
referred to here as the conformer and counterion distribution hypothesis. A glucopyranoside donor in the solvents acetonitrile
and 1,4-dioxane and in the presence of a triflate counterion are selected here to illustrate how the two hypotheses account for
the experimentally observed stereoselectivity.
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is explained by solvent-induced variations in the ring
conformational preferences of the oxacarbenium cation and
in the preferential location of the counterion relative to this
cation. Taken together, these effects control the side of the
anomeric carbon that can be attacked by the nucleophile. In
acetonitrile, the oxacarbenium ion preferentially adopts a B2,5

boat conformation while the counterion is predominantly
located moderately close (on average) to the cation and on
the R side. Both effects prevent the acceptor from attacking
from the R face and enhance the formation of the �-linked
product. In contrast, in ether, in toluene, or in dioxane, the
oxacarbenium ion preferentially adopts a 4H3 half-chair
conformation, while the counterion is preferentially located
very close to the cation and on the � side. Both effects
prevent the acceptor from attacking from the � face and
enhance the formation of the R-linked product. In the present
article, the theoretical evidence supporting this alternative
conformer and counterion distribution hypothesis as well as
the relevance of the alternative solVent coordination hypoth-
esis are described and discussed.

The model system selected for the present theoretical
investigations (Figure 3) consists of 2,3,4,6-tetra-O-methyl-
D-glucopyranosyl-triflate (1) as a prototypical glycosyl donor,
leading upon leaving group departure to a reactive intermedi-
ate complex involving a glucopyranosyl oxacarbenium cation
(2) and a triflate counterion (3). Note that, for simplicity (and

unlike, e.g., the donors considered in Table 1), the leaving
group is chosen here to be the same as the counterion. This
system was also investigated in previous QM calculations.68

The conformational properties of the reactive complex are
investigated in the solvents acetonitrile (4), diethyl ether (5),
toluene (6), and 1,4-dioxane (7), as well as in the gas phase
(vacuum).

2. Computational Methods

Quantum Mechanical Calculations. The QM calcula-
tions on the reference structures of compounds 1-7 and of
the oxacarbenium-solvent complexes 8-9, as well as on
trajectory structures obtained Via MD simulations (see further
below), were all carried out using density functional theory
at the B3LYP/6-31G(d,p) level69,70 in the electronic ground
state using the Gaussian 03 program.71 The calculations on
the reference structures 1-9 were performed both in the gas
phase (conditions assumed representative for a low polarity
solvent such as toluene, dioxane, or ether) and in an implicit
solvent (IEF-PCM approach, Integral-Equation Formation-
Polarizable Continuum Model72) for acetonitrile by using
the default parameter of Gaussian 03 for this solvent
(dielectric permittivity ε ) 35.688). Similarly, the trajectory
structures obtained Via MD simulations in dioxane were
analyzed in the gas phase, while those obtained Via MD

Figure 3. Chemical structures of the species relevant to the present study. 2,3,4,6-tetra-O-methyl-D-glucopyranosyl-triflate (1),
anomeric isomers of 1 (1a,b), oxacarbenium ion (2), representative conformers of the oxacarbenium ion (2a-h), trifluoromethane-
sulfonate (triflate) ion (3), solvents (4, 5, 6, 7), and oxacarbenium-solvent complexes (8, 9), presenting coordination of acetonitrile
(4) and 1,4-dioxane (7) to 2 on the R side (8a, 9a) or on the � side (8b, 9b).
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simulations in acetonitrile were investigated using the IEF-
PCM approach.

The reference structures of 1-7 were generated Via full
geometry optimization in the gas phase for the anomeric
isomers of 2,3,4,6-tetra-O-methyl-D-glucopyranosyl-triflate
(R-anomer 1a and �-anomer 1b), initiated from an ideal 4C1

conformation. The energy of 1b was found to be 28.8 kJ
mol-1 higher than that of 1a, as expected from the influence
of the anomeric effect.18,73 The C1-O1 bond lengths in the
optimized structures 1a and 1b were 0.143 and 0.147 nm,
respectively. The energy profile associated with the departure
of the triflate anion (3) was then calculated by constrained
geometry optimization, starting from the optimized structures
1a and 1b and progressively elongating the C1-O1 bond
from 0.150 to 0.500 nm in steps of 0.005 nm. Removal of
the triflate anion (3) from the two configurations at maximal
elongation led to a unique structure for the oxacarbenium
ion (2), presenting a 4H3 half-chair conformation (2a), in
agreement with independent findings.68 The reference struc-
tures of the triflate anion (3), as well as of acetonitrile (4),
diethyl ether (5), toluene (6), and 1,4-dioxane (7) were
constructed using the builder function of GaussView73

followed by full geometry optimization. The reference
structures of the corresponding oxacarbenium-solvent com-
plexes (8a, 8b, 9a, 9b) were also constructed using Gauss-
View to attach the geometry optimized solvent molecule to
the R or � side of the anomeric carbon of 2a, followed by
full geometry optimization.

Finally, a number of trajectory structures corresponding
to the most relevant ring conformations observed during the
100 ns MD simulations of 2 with 3 in solution (see below)
were further investigated at the QM level. For these
calculations, geometry optimization of the intermediate
complex was performed with a constraint on the C1-S
distance, r, to the peak value of the radial distribution
function P(r) obtained from the corresponding MD simulation.

Molecular Dynamics Simulations. The explicit-solvent
MD simulations were carried out using the GROMOS
simulation program75 together with the 53A6 force field,76,77

including recently reoptimized parameters for hexopyranose-
based carbohydrates.78-82 Additional parameters required for
the description of the oxacarbenium cation were inferred on
the basis of the 53A6 glucose molecule (Lennard-Jones and
torsional parameters), along with atomic partial charges
derived from an electrostatic potential fit based on the QM
results. All force-field parameters used in the present study
are reported as Supporting Information. The simulations
involved an oxacarbenium cation with a triflate counterion
in either acetonitrile, ether, toluene, or dioxane. Independent
simulations of the pure solvents were performed for the
determination of the corresponding dielectric permittivity
values.

For the simulations of the solvated oxacarbenium-
counterion complexes, the structures of 2 and 3 optimized
at the QM level were solvated by 300 solvent molecules at
the experimental (room-temperature) density of the solvent83

(790, 700, 865, 1040 kg m-3 for acetonitrile, ether, toluene,
and dioxane, respectively), within cubic computational boxes
(edge lengths of about 3.0, 3.7, 6.7, and 3.5 nm, respectively).

The pure solvent simulations involved cubic computational
boxes containing 1000 solvent molecules at the experimental
(room-temperature) density of the solvent.

After energy minimization, initial velocities were assigned
from a Maxwell distribution at 300 K, and the systems were
equilibrated by 500 ps MD simulation. The production runs
were then carried out for a 100 ns (oxacarbenium-counterion
complex simulations) or 10 ns (pure solvent simulations)
duration. The equations of motion were integrated using a 2
fs time step. The simulations were performed at constant
temperature (300 K) and pressure (1 atm) under periodic
boundary conditions. The temperature was maintained close
to its reference value by weak coupling to a heat bath84 with
a relaxation time of 0.1 ps. The pressure was maintained
close to its reference value by weak coupling to a pressure
bath84 (isotropic pressure scaling) with a relaxation time of
0.5 ps and an isothermal compressibility of 0.0004575 (kJ
mol-1nm-3)-1. The center of mass motion was removed
every 500 steps. The SHAKE algorithm84 was applied to
constrain the lengths of all covalent bonds and the full rigidity
of the solvent molecules. The nonbonded interactions were
calculated using a twin-range cutoff scheme,75,86 with short-
and long-range cutoff distances set to 0.8 and 1.4 nm,
respectively, and an update frequency of five time steps for
the update of the short-range pairlist and intermediate-range
interactions. A reaction-field correction was applied to
approximately account for the mean effect of electrostatic
interactions beyond the long-range cutoff distance. The
reaction-field permittivity was set to the corresponding
experimental (room temperature) dielectric permittivity of
the solvent (38.8, 4.2, 2.4, and 2.2 for acetonitrile,84 ether,84

toluene,87 and dioxane,88 respectively). Simulations of 2 with
3 in a vacuum at constant temperature (300 K) were also
performed for comparison.

The trajectory analyses were performed using the tools of
the GROMOS++ software package,75 as well as several
scripts developed for this study. For the oxacarbenium-
counterion complex simulations, the conformations of 2 were
categorized into eight representative types of conformations
of the oxacarbenium ion (Figure 3), namely, 4H3 (2a), 2S0

(2b), 2,5B (2c), 5H4 (2d), 3H4 (2e), 0S2 (2f), B2,5 (2g), and
4H5 (2h). These conformations were defined in terms of the
torsional angles γ1-γ5 around five of the six bonds in the
pyranose ring, as detailed in Table 2. The selected dihedral
angle ranges were slightly adapted from previous defini-
tions,45,89 so as to permit the attribution of all sampled
configurations to one of the recognized ring conformations.
The positioning of the triflate anion (3) relative to the
oxacarbenium cation was characterized by the spherical
coordinates r, θ, and � describing the direction of the S-C1
vector relative to the local plane of the pyranose ring at C1,
as detailed in Figure 4.

For the pure solvent simulations, the permittivity was
calculated from the fluctuations of the box dipole moment.

3. Results and Discussion

QM Calculations on Oxacarbenium-solvent Complexes.
The optimized geometries of the oxacarbenium-solvent
complexes 8a, 8b, 9a, and 9b (Figure 3) are shown in Figure

1788 J. Chem. Theory Comput., Vol. 6, No. 6, 2010 Satoh et al.



5. The potential energy of the � complex (8b) is found to
be slightly lower than that of the R complex (8a) for
acetonitrile (by 0.9 kJ mol-1 using the IEF-PCM solvation
model; 4.23 kJ mol-1 in the gas phase), while the potential
energy of the R complex (9a) is found to be much lower
than that of the � complex (9b) for dioxane (gas phase
calculation). The above observations are clearly at odds with
the solVent coordination hypothesis (Figure 2a). This hy-
pothesis would imply a preferential coordination of aceto-
nitrile on the R side (favoring a nucleophilic attack from
the � side and leading to the experimentally observed
predominance of the � product) and a preferential coordina-

tion of dioxane on the � side (favoring a nucleophilic attack
from the R side and leading to the experimentally observed
predominance of the R product), i.e., a trend exactly opposite
to that suggested by the present QM calculations.

MD Simulations of the Solvated Oxacarbenium-
Counterion Complex. As a preliminary calculation, the
dielectric permittivities of the solvent models employed for
acetonitrile (4), ether (5), toluene (6), and dioxane (7) were
calculated on the basis of pure solvent MD simulation and
were found to be 34.6, 3.5, 1.0, and 1.1, respectively, in good
qualitative agreement with the corresponding (room-tem-
perature) experimental values of 35.8, 4.3, 2.4, and 2.2.83,87,88

The populations of ring conformers (Figure 3) of the
oxacarbenium ion observed during the MD simulations of
the oxacarbenium-counterion complexes in the different
solvents as well as in vacuum are reported in Table 3.
Although all simulations were initiated from the same 4H3

conformation (2a), the equilibrium distribution encompasses
2,5B (2c), 5H4 (2d), 3H4 (2e), 0S2 (2f), B2,5 (2g), and 4H5 (2h)
conformers. The 3H4 (2e) and the 0S2 (2f) conformers are
dominant in all simulations, the proportion of the latter
increasing with the polarity of the solvent. Thus, for example,
the oxacarbenium ion preferentially adopts a 0S2 (2f)
conformation rather than a 3H4 (2e) conformation in aceto-
nitrile (2e/2f ratio of 36.5:60.7), whereas the opposite is
observed in dioxane (2e/2f ratio of 61.4:37.0). The propor-
tions observed in toluene or in vacuum are close to those
found in dioxane, while the proportions observed in ether
are intermediate between those found in acetonitrile and
dioxane.

The results of the MD simulations concerning the posi-
tioning of the counterion relative to the oxacarbenium cation
in the different solvents are illustrated graphically in Figures
6 and 7, and summarized numerically in Table 4. The
following observations can be made. First, the probability

Figure 4. Definition of the spherical coordinates r, θ, and �
used to characterize the positioning of the triflate anion relative
to the oxacarbenium cation. These coordinates describe the
direction of the C1-S vector relative to the local plane of
the pyranose ring at C1. Line AB is the interior bisector of the
angle C2-C1-O5. Line SC is perpendicular to the plane
C2-C1-O5, C being the intersection point. The distance r
corresponds to the length of the C1-S vector. The angle θ
corresponds to the angle C-C1-S. The angle � corresponds
to the angle B-C1-C.

Figure 5. Geometry-optimized structures (QM) of the oxac-
arbenium-solvent complexes 8 and 9 (Figure 3) involving a
coordinated acetonitrile molecule (calculation using an IEF-
PCM implicit solvent model) or dioxane molecule (calculation
in the gas phase). The distance between the anomeric carbon
and the nitrogen atom for 8 or the oxygen atom for 9, as well
as the potential energies of the � complexes (8b, 9b) relative
to the R complexes (8a, 9a), are also indicated.

Table 2. Definition of the Dihedral Angles and Corresponding Ranges Used to Assign the Different Ring Conformations of
the Oxacarbenium Cation (Figure 3), Namely, 4H3 (2a), 2S0 (2b), 2,5B (2c), 5H4 (2d), 3H4 (2e), 0S2 (2f), B2,5 (2g), and 4H5

(2h)

γ1 C5-O5-C1-C2 [deg] γ2 O5-C1-C2-C3 [deg] γ3 C1-C2-C3-C4 [deg] γ4 C2-C3-C4-C5 [deg] γ5 C3-C4-C5-O5 [deg]

2a 0 ( 60 0 ( 80 310 ( 30 50 ( 30 310 ( 30
2b 0 ( 60 0 ( 80 310 ( 30 50 ( 30 0 ( 20
2c 0 ( 60 0 ( 80 310 ( 30 0 ( 20 50 ( 30
2d 0 ( 60 0 ( 80 359 ( 19 310 ( 30 50 ( 30
2e 0 ( 60 0 ( 80 49 ( 31 310 ( 30 50 ( 30
2f 0 ( 60 0 ( 80 49 ( 31 310 ( 30 350 ( 30
2g 0 ( 60 0 ( 80 49 ( 31 5 ( 25 320 ( 40
2h 0 ( 60 0 ( 80 359 ( 19 49 ( 31 320 ( 40

Table 3. Ratios of Ring Conformers (Figure 3) of the
Oxacarbenium Ion Observed during the 100 ns MD
Simulations of the Oxacarbenium-Counterion Complex in
the Different Solvents (As Well As in Vacuum)

ratio of conformers [%]

solvent 2a 2b 2c 2d 2e 2f 2g 2h

4 0.0 36.5 60.7 2.7 0.0
5 0.0 50.1 47.6 2.3 0.0
6 0.0 0.0 70.9 27.7 1.3 0.0
7 0.0 61.4 37.0 1.6 0.0
in vacuum 0.1 68.8 29.6 1.5 0.0
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distribution P(r) of the C1-S distance r (Figure 6a) tends
to become broader, i.e., stretched to larger distances, with
an increase of the polarity of the solvent. Second, the
probability distribution P(θ) of the angle θ formed by the
C1-S vector and the local ring plane at C1 (Figure 6b) is
bimodal, with peaks at about (55° (θ < 0°, R side; θ > 0°,
� side). The population associated with the θ ) -55° peak
increases (relative to that associated with the θ )+55° peak)
with increasing polarity of the solvent. In other words, the
simulation results show that an increase in the solvent
polarity leads to a less tight binding of the triflate counterion
to the oxacarbenium cation and to a progressive shift of its
preferential positioning from the � to the R side of the ring.
This trend is also clearly evident when considering the
distributions of the counterion (successive positions of the
triflate S atom) along the different trajectories (Figure 7).
The correlation between the breadth of the cation-anion
distance distribution and the solvent polarity is easily

explained in terms of dielectric screening effects (counteract-
ing the direct Coulombic attraction between the two ions).
The concomitant shift from a preferential �-side to a
preferential R-side coordination upon increasing the solvent
polarity is more difficult to rationalize and appears to be
correlated with the shift from a dominant 3H4 (2e) to a
dominant 0S2 (2f) conformation (see further below).

As a result of these effects, in acetonitrile, the anion
presents a slight preference for the R side (θ < -10°)
compared to the � side (θ > 10°), with an R/� ratio of 48.2:
41.6 (Table 4). In contrast, it is predominantly found on the
� side in ether (33.5:58.9), toluene (18.4:79.1), dioxane (16.9:
74.3), and in vacuum (19.2:78.2). The corresponding average

Figure 6. Positioning of the counterion relative to the
oxacarbenium cation (Figure 4) observed during the 100 ns
MD simulations of the oxacarbenium-counterion complex in
the different solvents (as well as in vacuum): (a) distribution
P(r) of the distance r; (b) distribution P(θ) of the angle θ. The
P(θ) functions are normalized according to ∫-π/2

π/2 P(θ) cos(θ)
dθ ) 1. The probability P(θ) was also calculated for acetonitrile
with a cutoff r e 0.375 nm, the distance value at the peak of
P(r), resulting in a nearly identical distribution (not shown).

Figure 7. Positioning of the counterion relative to the
oxacarbenium cation observed during the 100 ns MD simula-
tions of the oxacarbenium-counterion complex in the different
solvents (as well as in vacuum). Successive positions of the
triflate S atom along the trajectories are displayed at 100 ps
intervals (1000 yellow beads), after superimposition of the
trajectory frames onto the initial configuration (4H3 ring
conformation of the oxacarbenium ion) based on all carbon
atoms of the cation.

Table 4. Positioning of the Counterion Relative to the
Oxacarbenium Cation (Figures 4 and 6) Observed during
the 100 ns MD Simulations of the Oxacarbenium-
Counterion Complex in the Different Solvents (As Well As
in Vacuum)

solvent
θ e -10°

(R-side) [%]
θ g 10°

(�-side) [%]
-10° < θ
< 10° [%] rj [nm] |�j | [deg]

4 48.2 41.6 10.2 0.438 53.0
5 33.5 58.9 75.6 0.349 39.8
6 18.4 79.1 2.5 0.338 32.3
7 16.9 74.3 8.8 0.355 35.8
in vacuum 19.2 78.2 2.7 0.338 32.7
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values of r and |�| also show that the triflate ion is more
weakly bound to the anomeric carbon in acetonitrile (rj )
0.438 nm, |�j |) 53.0°) compared to the other solvents (rj
ranging from 0.338 to 0.355 nm, and |�j | ranging from 32.3
to 39.8°).

In order to further investigate the correlation between the
ring conformation of the oxacarbenium ion and the prefer-
ential counterion positioning, the latter positioning was
analyzed separately for the configurations presenting 3H4 (2e)
or 0S2 (2f) conformations of the pyranose ring in the different
solvents. In acetonitrile (Figure 8a), the dominant configura-
tions involve a 0S2 (2f) ring conformation with the counterion
on the R side (2f-R; 33.1%), while three alternative con-
figurations are nearly equally populated, namely, 2f-�
(21.1%), 2e-� (19.3%), and 2e-R (13.8%). In the other
solvents (Figure 8b-e), the oxacarbenium ion predominantly
adopts a 3H4 conformation (2e) with the counterion on the
� side (2e-�; 45.2%, 69.8%, 56.1%, and 66.4% in ether,
toluene, dioxane, and a vacuum, respectively). In dioxane
and a vacuum, there is almost no oxacarbenium ion with
the counterion at its R side, and the configurations 2e-� and
2f-� taken together account for 73.7 and 77.7%, respectively,
of the all sampled configurations.

In summary, the MD simulations suggest that, in aceto-
nitrile, the oxacarbenium ion preferentially adopts a 0S2 (2f)
or, to a lesser extent, a 3H4 (2e) conformation, with the
counterion loosely bound to the anomeric carbon and
distributed nearly equally on the R and � sides (slight R side
preference for 2f and � side preference for 2e). In contrast,
in the solvents of lower polarity, the oxacarbenium ion
preferentially adopts a 3H4 (2e) conformation with the

counterion tightly bound to the anomeric carbon and
predominantly on the � side. This � side preference is also
observed for the minor 0S2 conformer.

The above observations provide support to the conformer
and counterion distribution hypothesis (Figure 2b). This
hypothesis suggests that, in acetonitrile, the preferential ring
conformation (0S2) and counterion positioning (R side) both
favor an attack of the nucleophile from the � side, leading
to the experimentally observed predominance of the �
product, while in a solvent of lower polarity, the preferential
ring conformation (3H4) and counterion positioning (� side)
both favor an attack of the nucleophile from the R side
(leading to the experimentally observed predominance of the
R product). This is in excellent agreement with the results
of the present MD simulations for acetonitrile, ether, and
dioxane. Note that this interpretation differs from the
previously formulated hypothesis49 that 4H3 conformers are
preferentially R-selective and 3H4 conformers �-selective,
indicating that the consideration of the counterion positioning
is essential in the theoretical investigation of glycosylation
intermediates.

The simulation results are, however, in apparent con-
tradiction with the conformer and counterion distribution
hypothesis in the case of toluene. For this solvent, the
conformational properties of the oxacarbenium-counterion
complex are similar to those observed in ether, dioxane,
and vacuum. However, synthetic experiments usually
observe no or a low stereoselectivity in toluene.60,61,63-65,67

One possible reason for this discrepancy is that the
conformational properties of the oxacarbenium-counterion
complex in toluene are influenced by effects that are not

Figure 8. Correlation between the ring conformation of the oxacarbenium cation and the preferential counterion positioning, as
observed during the 100 ns MD simulations of the oxacarbenium-counterion complex in the different solvents (as well as in
vacuum). The proportions of the sampled configurations corresponding to 3H4 (2e) and 0S2 (2f) ring conformers, along with
R-side (θ e -10°; white bars), �-side (θ g 10°; gray bars), or in-plane (-10° < θ < 10°; black bars) counterion locations, are
reported.
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taken into account appropriately in classical force-field
simulations, such as stereoelectronic effects and cation-π
interactions. Note, however, that a significant (nonsys-
tematic) stereoselectivity may also be observed in this
solvent, depending on the donor, acceptor, and activator
(e.g., entries 7 and 12 in Table 1, evidencing clear R-
and �-stereoselectivities, respectively).

QM Analysis of Selected MD Trajectory Structures.
The classical force-field representation employed in the MD
simulations takes realistically into account solvation effects
but has its shortcomings, including an approximate descrip-
tion of stereoelectronic effects (controlling in particular the
relative stabilities of the different ring conformations). For
this reason, selected configurations of the oxacarbenium-
counterion complex presenting different ring conformations
were extracted from the simulations in acetonitrile and
dioxane and subjected to a QM analysis, i.e., geometry
optimization and energy evaluation. These calculations were
performed using the IEF-PCM implicit solvent model (ac-
etonitrile) or in the gas phase (dioxane).

In a first step, configurations of the oxacarbenium ion
without the counterion were geometry optimized starting
from MD configurations presenting the 3H4 (2e) or the 0S2

(2f) conformations. This optimization did not result in ring

conformational changes (for 3H4, this observation contradicts
previous suggestions concerning the stability of this con-
former during QM calculations55). The final energies and
dipole moments, in both acetonitrile and in vacuum (diox-
ane), are reported in Figure 9 and compared to the corre-
sponding values for the geometry optimized 4H3 conforma-
tion (2a). The latter conformation is often considered to be
the most stable one for a typical oxacarbenium cation36,89-92

and was used as the starting conformation for the MD
simulations. Both of the structures predominantly sampled
during the MD simulations (2e, 2f) are about 1-3 and 26-28
kJ mol-1 more stable than 2a in acetonitrile and in vacuum,
respectively. The energy ranking of the three structures
matches that of the dipole moment magnitudes; i.e., the
favored conformations (2e and, to a slightly lesser extent,
2f) are those with the lowest dipole moment. Expectedly,
the energy differences are much larger in vacuum (dioxane)
compared to acetonitrile, because a polar medium more
efficiently stabilizes conformations with a higher dipole
moment. The observed trends are in good qualitative
agreement with the relationships inferred from the MD
simulations between preferential ring conformations and
solvent polarity.

In a second step, configurations of the oxacarbenium-
counterion complex were geometry optimized starting from
MD configurations presenting a 3H4 conformation with
the counterion on the R side (2e-R) or � side (2e-�), or a
0S2 conformation with the counterion or the R side (2f-R)
or � side (2f-�). These optimizations were performed with
a constraint on the C1-S distance, set to the peak value
of P(r) (Figure 6a) as determined in the MD simulations
in acetonitrile (0.38 nm) or in dioxane (0.34 nm). In four
cases, the optimization resulted in a conformational change
of the ring to either a 5H4 (2d), a B2,5 (2g), or a 4H3 (2a)
configuration, namely, 2e-� f 2d-�, 2f-R f 2g-R, and
2f-� f 2g-� in acetonitrile and 2f-� f 2a-� in vacuum
(dioxane). The final energies and dipole moments, in both
acetonitrile and vacuum (dioxane), are reported in Table
5 and compared to the relative conformer populations (2e-
R, 2e-�, 2f-R, and 2f-�) observed in the corresponding
MD simulations (Figure 8).

Figure 9. Geometry-optimized structures (QM) of the oxac-
arbenium cation (2) in 4H3 (2a), 3H4 (2e), and 0S2 (2f) ring
conformations in acetonitrile (calculation using an IEF-PCM
implicit solvent model) or in the gas phase (assumed repre-
sentative for dioxane). The potential energies (relative to 2a)
and the dipole moments (relative to the center of charge) are
also indicated.

Table 5. Relative Energies Corresponding to Geometry-Optimized Structures (QM) of the Oxacarbenium Cation (2)
Presenting Different Ring Conformations (Figure 3) and Counterion (3) Positioning (R or �) in Acetonitrile (Calculation Using
an IEF-PCM Implicit Solvent Model) or in Vacuum (Assumed Representative for Dioxane)a

entry no.
starting

conformation of 2 location of 3
ratio in MD

simulations [%]
conformation of 2 in
optimized complex

relative energy
[kJ mol–1]

dipole moment
[Debye]

in acetonitrile
1 2e R 13.8 2e 0 19.2
2 � 19.3 2d –11.3 15.6
3 2f R 33.1 2g –13.4 17.8
4 � 21.1 2g 2.3 17.9

in vacuum
5 2e R 0.17 2e 0 10.0
6 � 56.1 2e –20.3 9.5
7 2f R 1.4 2f –18.9 10.7
8 � 17.6 2a –28.7 9.7

a The energies are given relative to entries 1 (in acetonitrile) or 5 (in vacuum). The corresponding dipole moments (relative to the center
of charge) are also reported. The initial ring conformation prior to geometry optimization and the occurrence of this specific configuration in
the MD simulations are also indicated.
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Although the MD simulations and QM calculations
suggest slightly different dominant configurations for the
reactive oxacarbenium-counterion complex in acetonitrile
(2f-R and 2g-R, respectively), these configurations present
two common features. First, the coordination of the
counterion on the R face blocks a nucleophilic attack from
this side. Second, the lack of steric crowding and high
exposure of the anomeric carbon toward the � face
facilitates a nucleophilic attack from this side (Figure 10).
In contrast, 2e-R, 2d-�, and 2g-� are sterically crowded
on the face opposite the counterion. These observations
are consistent with the experimentally observed predomi-
nance of the �-product in acetonitrile. Note that the
conformations identified here do not include the 5S1

conformer, which was proposed previously on the basis
of QM calculations on the same compound in dichlo-
romethane,91 this conformation being similar to 2g
except for the pseudoequatorial orientation of C2-O2
bond.

The MD simulations and QM calculations also suggest
different dominant configurations for the reactive oxacarbe-
nium-cation complex in dioxane (2e-� and 2a-�, respec-
tively). However these configurations again present two
common features. First, the coordination of the counterion
on the � face blocks a nucleophilic attack from this side.

Second, the lack of steric crowding and high exposure of
the anomeric carbon toward the R face facilitates a nucleo-
philic attack from this side (Figure 10; although the exposure
is similar, the steric crowding is slightly higher for 2e-�
compared to 2a-�). In contrast, 2e-R and 2f-R are sterically
crowded on the face opposite the counterion. These observa-
tions are consistent with the experimentally observed pre-
dominance of the R product in dioxane.

The suggestion of a 4H3 conformation with the counterion
on the � side (2a-�) for the reactive intermediate complex
in solvents of low polarity (R-selectivity) is also compatible
with the result of glycosylation experiments involving
conformationally locked pyranosides functionalized by a
N-benzyl-2,3-trans-oxazolidinone group.93-96 For these com-
pounds, 4H3 is the only possible conformation of the pyranose
ring, and in agreement with the present suggestion, these
compounds predominantly lead to the formation of R-linked
glycosides.

To our knowledge, the present work is the first study
suggesting a key role for the (solvent-modulated) counterion
coordination in influencing the stereoselectivity of glycosy-
lation reactions, besides a previously postulated role of this
anion as a proton acceptor near the transition state of the
reaction.55

Figure 10. Relative potential energies corresponding to geometry-optimized structures (QM) of the oxacarbenium cation (2)
presenting different ring conformations and counterion (3) positioning (R or � side) in acetonitrile (calculation using an IEF-PCM
implicit solvent model) or in vacuum (assumed representative for dioxane). The entry numbers refer to Table 5. The energies
are given relative to entries 1 (in acetonitrile) or 5 (in vacuum). The initial ring conformation prior to geometry optimization is
indicated between parentheses.
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4. Conclusions

The present study combines QM calculations and explicit-
solvent MD simulations to gain a better understanding of
solvent effects on the stereoselectivity of glycosylation
reactions. To this purpose, a model system consisting of a
methyl-protected triflate glucopyranoside in different solvents
(acetonitrile, ether, dioxane, toluene, and in vacuum) is
considered.

The common assumption concerning solvent effects on
the stereoselectivity of glycosylation reactions, the solVent
coordination hypothesis, suggests that the preferential co-
ordination of a solvent molecule to the reactive oxacarbenium
cation on one side of the anomeric carbon (R or �) hinders
a nucleophilic attack from this side, thereby favoring the
product with the opposite stereochemistry (� or R). The
present calculations do not support this hypothesis. For
example, an acetonitrile molecule is predicted to preferen-
tially bind on the � side, in disagreement with the experi-
mentally observed R-selectivity in this solvent. Conversely,
a dioxane molecule is predicted to preferentially bind on the
R side, in disagreement with the experimentally observed
R-selectivity.

However, the present calculations support an alternative
explanation, termed here the conformer and counterion
distribution hypothesis. This new hypothesis suggests that
the stereoselectivity is dictated by two interrelated confor-
mational properties of the reactive oxacarbenium-counterion
complex, namely, (1) the conformational preferences of the
oxacarbenium pyranose ring, modulating the steric crowding
and exposure of the anomeric carbon toward the R or � face,
and (2) the preferential coordination of the counterion to the
oxacarbenium cation on one side of the anomeric carbon,
hindering a nucleophilic attack from this side. For example,
in acetonitrile, the calculations suggest a dominant 0S2 (MD)
or B2,5 (QM) ring conformation of the oxacarbenium ion with
preferential coordination of the counterion on the R side
within the reactive intermediate complex. Both factors render
the anomeric carbon most accessible from the � side, in
agreement with the experimentally observed �-selectivity in
this solvent. Conversely, in dioxane, the calculations suggest
a dominant 3H4 (MD) or 4H3 (QM) ring conformation with
preferential counterion coordination on the � side. Both
factors render the anomeric carbon most accessible from the
R side, in agreement with the experimentally observed R
selectivity in this solvent. The reactive conformations
predicted by the QM calculations (B2,5 in acetonitrile and
4H3 in dioxane) are probably more realistic, since these
calculations take more appropriately into account the ste-
reoelectronic effects controlling the relative stabilities of the
different ring conformations.

In the case of dioxane, the 4H3 conformation is indeed
the one usually considered to be the most stable for typical
oxacarbenium cations.36,90-92 It is also the only possible
conformation in the case of conformationally locked pyra-
nosides functionalized by a N-benzyl-2,3-trans-oxazolidinone
group, which predominantly lead to R-linked disaccharides
upon glycosylation.93-96 In the case of acetonitrile, the
suggestion of a reactive B2,5 conformation has been formu-
lated previously on the basis of experiments on N-(tetra-O-

acetyl-R-D-glucopyranosyl-4-methyl-pyridinium bromide) in
aqueous solution.97,98 The shift between the former and latter
conformations upon increasing the polarity of the solvent
may tentatively be attributed to dielectric screening effects,
increasingly stabilizing conformers with higher dipole
moments.

In summary, the theoretical (and experimental) data
discussed in the present study are clearly compatible with
the new conformer and counterion distribution hypothesis
and do not provide support to the more common solVent
coordination hypothesis. However, mechanistic hypotheses
can seldom be formally “proved”. They can only be
strengthened by accumulation of compatible data and
elimination of concurrent hypotheses. In this sense, the
present work provides preliminary evidence for a key role
of the oxacarbenium conformation and counterion coordina-
tion within the reactive complex. Theoretical and experi-
mental work is currently in progress to further refine this
new hypothesis.
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Abstract: Multiple time scale methodologies have gained widespread use in molecular dynamics
simulations and are implemented in a variety of ways across numerous packages. However,
performance of the algorithms depends upon the details of the implementation. This is particularly
important in the way in which the nonbonded interactions are partitioned. In this work, we show
why some previous implementations give rise to energy drifts, and how this can be corrected.
We also provide a recipe for using multiple time step methods to generate stable trajectories in
large scale biomolecular simulations, where long trajectories are needed.

1. Introduction

Molecular dynamics is a ubiquitous tool for simulating a wide
variety of large scale systems, ranging from the materials to
the biological sciences. Schemes that increase the efficiency
of such simulations are of great interest. In standard
techniques, the time step of the generated trajectory is limited
by the fastest motions present in the system. However,
realistic systems contain a broad spectrum of frequencies.
Multiple time scale (MTS) methods partition the computation
into “slow” and “fast” portions, assigning appropriate time
steps to each segment. This methodology may be exploited
in systems with disparate masses,1 high frequency oscillators
in slowly evolving baths,2 and distance based schemes that
partition the nonbonded interactions into short- and long-
range components.3-5

The reversible reference system propagator algorithm (r-
RESPA)6 is one of the most powerful implementations of
the multiple time scale concept. r-RESPA integrators are
readily derived from factorization of the Liouville propaga-
tor.6,7 It therefore provides an integration scheme that is
reversible in time and evolves in a symplectic and area
preserving fashion, thereby preserving these attributes of an
exact solution to Hamilton’s classical equations of motion.
Furthermore, a variety of different multiple time scale

partitionings may be readily recovered from this framework,
including related integrators.5 This algorithm has been widely
implemented in simulation packages such as IMPACT,8

NAMD2,9 AMBER,10 and DESMOND.11

The widespread availability of fast multicore computer
clusters, massively parallel supercomputers, and the im-
provements of parallel algorithms have facilitated the simula-
tion of longer trajectories on the order of tens of nanoseconds
to microseconds for large biomolecular systems. Since the
majority of papers reporting tests of the stability of multiple
times scale methods were published before such advances,
it is important to evaluate the validity of MTS algorithms
using much longer times scales. A more recent work by Han
et al.12 studies disparate time scales in a simulation of a
biomolecular system in a Langevin bath over several
nanoseconds. Here, we focus on the stability of the integrator
as measured by its energy conservation in the microcanonical
simulation. This is due to the fact that coupling the system
to the thermostats and barostats necessary to generate other
ensembles may obscure or complicate the evaluation of the
integrator’s stability.

Symplectic integrators such as r-RESPA can successfully
generate long stable trajectories. In addition, for such
integrators, there exists a modified or shadow Hamiltonian13,14

which is exactly conserved as the system is propagated,
although it is only known approximately for realistic
systems.15,16 However, despite these desirable properties,
r-RESPA and related integrators are known to suffer from
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resonance instabilities,5,17-19 which bound the size of the
time step of the slowest motions relative to the size of the
faster modes. Resonance phenomena engender the building
up of energy in the system, thereby giving rise to drifts in
average properties and inaccurate sampling. Schemes have
been developed to alleviate this problem,18,20-27 although
some are only suitable for sampling and not investigations
of system dynamics.

In this work, however, we do not focus on resonance
phenomena in particular, but rather on optimizing the
splitting of the long-range nonbonded electrostatics in order
to ensure long time numerical stability. In periodic systems,
nonbonded interactions may be split in two ways. We will
refer to these schemes as RESPA1 (split by real-space and
k-space in Ewald summation) and RESPA2 (split by intrinsic
time scale; see section 2). Another consideration is how the
interactions are smoothed at the boundary between the long-
and short-range interactions.4,6 This is facilitated by use of
a switching function, the details of which may be crucial to
generating a stable trajectory.

As with any numerical scheme, the performance of
r-RESPA depends on the details of its implementation. In
order to illustrate this point, we present in Figure 1 the
deviation of the total energy from its initial energy over the
course of a microcanonical simulation of lysozyme in an 8
M urea solution performed utilizing several integration
schemes, as implemented in the NAMD2 simulation package.
The simulations were run for up to 200 ns, but only the first
15 ns of data are shown. It can be seen that the standard
velocity Verlet integrator is stable with a time step of 1 fs.
In the r-RESPA schemes, the bonded interaction is evaluated
with a time step of 1 fs. However, the nonbonded interaction

is handled in two different ways, each utilizing an additional
time scale of 2 fs. In one version, the entire nonbonded
interaction is evaluated at the larger time step. We refer to
this as “RESPA:B/NB”, and the results are reported in the
top panel of Figure 1. Also plotted in the top panel is the case
when the nonbonded interactions are split across the two time
scales according to the default implementation in NAMD2.
This is denoted as “RESPA2:C1” (as we will discuss in
section 2, this implementation in NAMD2 is similar to
RESPA2 as presented in the literature28,29 but is not exactly
the same). It can be seen that, whereas RESPA:B/NB is
relatively stable, a significant energy drift is present in the
RESPA2:C1 result. Counterintuitively, therefore, the larger
drift is seen in the case where a greater portion of the
interaction is integrated at the shorter time step.

It has been shown that seemingly reasonable implementa-
tions can give rise to unexpected energy drifts. We are
therefore motivated to test the stability of the various schemes
of applying the r-RESPA algorithm in microcanonical
simulations over long trajectories. In particular, we are
interested in investigating the details of the partitioning of
the nonbonded interactions. Stability depends upon the details
of the interaction split, such that the incorrect choice of
parameters can lead to unstable trajectories. We find that
the large energy drift of RESPA2:C1 as shown in the top
panel of Figure 1 is engendered by the choice of switching
function that facilitates the partitioning of the nonbonded
interactions (electrostatic interactions to be specific). The
bottom panel of this figure shows the total energy for
the trajectory for the same RESPA2 scheme, except that the
switching function has been “fixed” (denoted RESPA2:C2).
This modification has been recently ported into NAMD2,
and its details will be explained below.

This article is organized as follows: Section 2 reviews the
different ways to decompose the nonbonded interactions. In
section 3, the sensitivity of the nonbonded splittings is tested
for a simple water system, and what is learned here is applied
to a biomolecular system in section 4. Conclusions are given
in section 5.

2. Choosing the Force Splitting

Of crucial importance to the nature of the algorithm is the
way in which the multiple time scales are defined. In a typical
empirical potential, this may be done by splitting the force
into a set of terms that are evaluated at different time steps.
It is typical for the fastest motions to be chosen as the
stretching and bending terms of the force field. The torsional
terms of the potential may be included here, or treated at
another level “outside” the stretching and bending interaction.
The nonbonded interaction may be split into two or more
parts according to their relative intrinsic time scales (fast or
slow, on the basis of pair distances). In this work, we will
only consider nonbonded potentials of the following form
which act in a periodic simulation cell with vector of
periodicity n:

Figure 1. (Top) Deviation of the total energy from the initial
energy (E0 ) -240 068 kcal/mol) plotted against trajectory
length for a solvated lysozyme using the NAMD2 package.
The lengths of all covalent bonds to hydrogen are constrained
in all runs. The default RESPA2/C1 (red line) and BONDED/
NON-BONDED (labeled B/NB, green line) schemes are
plotted against a standard velocity Verlet run (black line). The
bottom panel shows a NAMD2 simulation of the same system.
The red and black lines correspond to the same plots as in
the top panel. The blue line utilizes the RESPA2 type splitting
with our fix, which has been implemented as the “long-
Splitting)c2” option in NAMD2, version 2.7b2 (see section
3).
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where the sum is over all periodic images and all pairs that
do not correspond to the same atomic site. The function, φ,
is a short-ranged potential effectively accounting for repulsive
and dispersion interactions (typically taken to be of the
Lennard-Jones form), and the second term is the electrostatic
interactions of fixed point charges. The electrostatic potential
is long-range and may be treated via the Ewald summation
technique3,30,31

where Vscr is a short-ranged, screened potential and VKS is a
smooth, slowly varying potential that is most efficiently
computed in reciprocal space:

where S(k) ) ∑i
Nqi eik · ri. The term Vself subtracts out the

interaction between the same sites that is implicit in the
reciprocal space sum. As it is position-independent, it will
not contribute to the forces and will be neglected for the
rest of this discussion. The parameter R determines the degree
of screening and is chosen in accordance with the real space
interaction cutoff rcut. The reciprocal space part of the Ewald
summation may be computed directly or by means of
methods that utilize fast Fourier transforms (FFT) such as
particle mesh Ewald (PME),32 smooth particle mesh Ewald
(SPME),33 particle-particle particle-mesh Ewald34 (P3ME),
and the fast multipole method35 (FMM). Such techniques
have been implemented alongside r-RESPA29,36-38

Within the multiple time scale framework, the nonbonded
forces may be split into two or more partitions.29,39,40 In
this study, we will restrict ourselves to splitting the non-
bonded force into two parts. When choosing a splitting for
the forces into near and far contributions, a natural choice
would be to utilize the explicitly short-ranged potentials as
the near force and the reciprocal space sum as the long force.
This choice also has the utility that the more computationally
expensive reciprocal space part is computed less frequently.
Following the nomenclature of ref 29, this choice is referred
to as “RESPA1.”

The factor (1 - Θ(rij
n - rcut)) cuts off the interaction in

real space, where Θ(r) is the Heavyside function. Smoother

functions may be utilized to facilitate improved energy
conservation.

As noted in previous work,28,29 this is not the optimal split,
as some fast components are screened out of the potential
in eq 3 and are therefore present in the reciprocal space term
(eq 5). One may subtract this portion from the “far” potential
and add it into the “near” potential, yielding a split that we
will refer to (as in ref 29) as “RESPA2.”

The forces may be obtained by taking the negative gradient
of the associated piece of the potential and then splitting it
according to the r-RESPA algorithm.6 In general, a cutoff
different than the overall real space interaction cutoff, rcut

res,
may be employed for the division between the “near” and
“far” forces. The forces may be decomposed as follows:4,6

where S is a switching function that softens the transition
from fast to slow forces that occurs at a given cutoff. The
switching function is made to act over a healing length, λ.
Too harsh a transition can lead to errors in the region of the
cutoff, thereby introducing instabilities in the propagation
that accumulate over the integration time. In some implementa-
tions,9,22 the entirety of short ranged potential φ is placed in
the inner loop and only the electrostatic interactions are split.
It is also possible to instead apply a switching function
directly to the potential.22,41 If S is applied to the potential,
then the corresponding switching function S̃ will act upon
the force, thereby replacing S in eq 9 with the following
expression:

where the prime indicates a derivative with respect to
distance r. Note that, since the forces and not the potentials
are utilized to generate the trajectories, it is the smoothness
of the switching function that acts on the force which will
impact the integration stability. In principle, equivalent
switching functions, either on the potential or on the force,
will generate the same smooth trajectories.
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The switching function, S, used here is given in the
following piecewise form:

where the function, g, is chosen so as to smoothly transition
from 1 to 0. In this work, we will consider three forms of
this function: a cubic spline, g3, that was utilized on the force
in the original formulation of r-RESPA,4,6 a quintic spline,
g5, that was utilized to cut off the electrostatic potential in a
different context,42 and a different form of cubic spline
(denoted as the C1 spline), gC1, which is the default choice
in NAMD2.9

where:

The quintic spline has the benefit of being a smoother
function than the other choices, although it is also marginally
more computationally expensive. Of course, we make no
pretense of making the optimal choice, and other functions
may be appropriate. The sensitivity of the algorithm perfor-
mance to the nonbonded interaction splitting will be con-
sidered in the next section.

3. Testing the Splitting

In order to test the performance of the schemes delineated
above, we perform a series of simulations and monitor the
total energy conservation via the deviation of the energy from
its initial energy, E - E0, as a function of time, where E is
the total energy and E0 is the initial energy. This plot
monitors the drift and fluctuations of the conserved quantity.

We carried out simulations utilizing the PINY_MD pack-
age.43 The PINY_MD package contains a multifeatured
r-RESPA implementation to which we have added the
RESPA2 splitting and the quintic switching function. The
particle mesh Ewald method is utilized for computing the
long-range interactions.33 An overall real space cutoff of
10 Å and an rcut

res of 8 Å were utilized in all of our PINY_MD
studies in this and the succeeding section. Using a relatively
small cutoff for rcut

res is presently computationally advanta-
geous due to the fact that it shifts a greater burden onto the
less frequently evaluated “far” interactions. It has been shown
by Han et al.12 that the cutoffs may be increased to yield
larger differences between the inner and outer time steps such
that the algorithm efficiency may be optimized according to
the features of the simulation package and available hard-
ware. The switching function is applied directly to the force
as in eq 9.

Due to the large difference between fast OH stretches and
the slower librations and translational motions, liquid water
is a natural system on which to test the multiple time scale
approach. However, the high frequency of the OH stretch
induces resonance instabilities (see section 1) at rather small
outer time steps.22 The resonance barrier may be simply
postponed by constraining the lengths of all the covalent
bonds to hydrogens, and this is the approach that we follow
here. Therefore, we utilize a rigid model of water. Since all
covalent bond lengths are being constrained, the forces are
only split between near and far nonbonded contributions.

We simulate a system of 905 water molecules in a periodic
cubic cell with a side 30 Å in length, and the TIP3P model44

is utilized to describe the interactions. The internal geometry
of each molecule is constrained.45 The near forces are
updated every 1 fs, whereas the far forces are updated every
5 fs. The Ewald screening parameter utilized is R ) 0.4 Å.
In this regime, previous studies have shown that the multiple
time scale splitting is stable for rigid water models.22,29

Simulations of 4 ns in length were carried out in order to
test the sensitivity of RESPA1 and RESPA2 to the choice
of switching function and healing length.

This model will serve as our test of the sensitivity to choice
of switching function parameters and functional forms.
Healing lengths of 2 and 4 Å, as well as the cubic and quintic
forms, were studied. In Figure 2, E - E0 is plotted versus
time for selected choices of the switching function using both
the RESPA1 and RESPA2 schemes. Additional stability data
for all runs are given in the Appendix. It can be seen that
the energy conservation dramatically improves as the switch-
ing function is made “smoother” for RESPA2, although
RESPA1 is relatively insensitive to this change. The switch-
ing function can be made smoother by increasing its order
and by increasing the distance over which the function acts
(λ). As is evident from the data in the Appendix, the careful
choice of both of these aspects is necessary to optimize
performance. Sensitivity of the RESPA2 scheme to the

S(r;rcut
res, λ) ) {1 r e rcut

res - λ
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res, λ) rcut
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0 r g rcut
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2
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Figure 2. The deviation, E - E0 (where E0 ) -7259 kcal/
mol), of the conserved energy for TIP3P water when the
RESPA1 (black lines) and RESPA2 (red lines) schemes are
utilized. The top panel depicts the results if a cubic switching
function with a healing length of 2 Å is employed, whereas in
the bottom panel a smoother choice for the switch (a quintic
function with a healing length of 4 Å) is made.
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choice of healing length has been previously noted in ref
24. The RESPA1 scheme is relatively insensitive to this
choice due to the fact that the interactions are already damped
in the cutoff region because the screened and not the bare
Coulomb potential is utilized for the “near interaction” (see
eq 6). Furthermore, one may note that the drift observed in
the RESPA2 scheme for a poor choice of switching function
can go unnoticed over the first several hundred picoseconds
of the simulation. This observation underlines the importance
of monitoring longer trajectories in order to assess the
performance of any integration scheme.

We now return to the original question posed by Figure
1. As noted in the Introduction, the nonbonded portion is
split according to RESPA2 within NAMD2.9 By default, the
C1 switching function (eq 14), with a hard wired healing
length of λ ) rcut, is applied directly to the potential.
Numerical stability therefore depends upon the smoothness
of S̃(r) as defined in eq 10 (see section 2). In the bottom
panel of Figure 1, we plot the results shown in the top panel
of this figure against what occurs if the default C1 switching
function is simply replaced with our smoother quintic
switching function for the RESPA2 scheme.46 One can see
that this single modification largely alleviates the drift in the
conserved energy and provides a fix, albeit not an optimal
one.

4. Appropriate Settings for Biomolecular
Simulations

In current research, the primary utility of multiple time scale
methods is to increase the computational efficiency of
biomolecular simulations. To this end, we make a careful
study of the performance of r-RESPA for such systems. As
a test case, we simulate a lysozyme surrounded by 6328
TIP3P water molecules in a periodic cubic box with a side
of length 61.5 Å using the CHARMM2247 force field. The
Ewald screening parameter is set to 0.37 Å. We chose a time
step of 1 fs for the near nonbonded interactions and torsional
terms, and we integrate the stretching and bending terms of
the protein with a time step of 0.5 fs. The outer time step
that splits the nonbonded interactions is varied. We utilize a
quintic switching function with a healing length of 4 Å in
all runs. All water molecules are taken to be rigid, and all
bonds to hydrogen (except hydrogen bonds) within the
protein are also constrained, so as to delay resonance
instabilities (see sections 1 and 3). We equilibrate the system
using the RESPA2-4FS protocol for over 4 ns.

Several runs are presented in Figure 3. It is shown that
the splitting is strictly stable up to 4 fs, whereas larger steps
exhibit some degree of drifting due to the onset of resonance
effects discussed in section 1. When the switching function
is properly set, it can be seen that the RESPA2 scheme
outperforms RESPA1. This is indicated by the smaller energy
fluctuations in the RESPA2 runs. For an outer time step of
6 fs, the RESPA2 result also possesses a significantly smaller
drift than the corresponding RESPA1 run and, in fact, appears
to be fairly stable, as shown in Figure 3. The small drifts
become more apparent, however, as the simulation progresses
beyond 8 ns (results not shown).

Furthermore, it is shown in Table 1 that the r-RESPA runs
yield equivalent averages to runs where the nonbonded
interactions are not split and evaluated every femtosecond.
It may be possible to utilize larger outer time steps by either
increasing the real space cutoff12 or by splitting the non-
bonded interaction into more than two portions,29 where
different time scales may be used to characterize near,
intermediate, and long-range nonbonded interactions.

5. Conclusion

Multiple time scale molecular dynamics techniques can be
an important tool for the creation of optimized molecular
dynamics integrators. Although splitting the nonbonded
interactions according to their intrinsic space or time scales
may be readily accomplished, the proper division of the
intermediate and long-range interactions interactions so as
to ensure stability and energy conservation can be full of
pitfalls. In this work, we have performed a detailed study of
the accuracy of nonbonded splitting schemes, in particular,
schemes where the electrostatic interactions are split into real
and reciprocal space (RESPA1) parts or distance based
(RESPA2) contributions. It is found that, while RESPA2
outperforms RESPA1, it has a greater dependence upon the
details of the function that switches between the two
contributions. This dependence can lead to rather significant
drifts in the total energy over the course of long simulations,
as is found in some previous implementations. To this end,
we have provided some guidance for nonbonded splitting

Figure 3. The deviation, E - E0, of the energy from the initial
energy is plotted for selected runs of lysozyme utilizing
RESPA1 with an outer time step of 4 fs (black line) and 6 fs
(purple line) and RESPA1 with an outer time step of 4 fs (red
line) and 6 fs (blue line). For this system, E0 ) -53 377 kcal/
mol.

Table 1. Comparison of the Average Total Energy,
Potential Energy, and Temperature for Selected
Simulations of the Solvated Lysozyme Systema

system E (kcal/mol) T (K) V (kcal/mol)

NO-SPLIT-1FS -53374 (0.17) 299.45 (1.7) -66138 (73)
RESPA1-4FS -53373 (0.73) 299.24 (1.7) -66127 (72)
RESPA2-4FS -53374 (0.30) 299.64 (1.7) -66147 (73)

a The standard deviation of each quantity is given in
parentheses.
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schemes and implemented these in selected simulation
packages (NAMD2 and PINY_MD). Even though these
implementations are applied to particular simulation pack-
ages, we believe that these findings are of broader applicabil-
ity to multiple time scale methods and will be particularly
useful for modern biomolecular simulations where long
trajectories on the order of tens of nanoseconds to micro-
seconds are needed.
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Appendix: Quantifying the Integrator
Stability

We utilize two standard measures in order to assess the
stability of the run:48-50

where E is the total energy and T is the kinetic energy. In
general, Econv is more sensitive to the drift in energy, whereas
R is more directly related to its fluctuation. The details of
all the simulations performed with PINY_MD are given
alongside these measures of stability in Table 2. It can be
seen that RESPA2 does not outperform RESPA1 until both
a suitable smooth switching function form and appropriate
healing length are chosen.
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Kolossváry, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wu,
X.; Brozell, S.; Steinbrecher, T.; Gohlke, H.; Yang, L.; Tan,
C.; Mongan, J.; Hornak, V.; Cui, G.; Mathews, D.; Seetin,
M.; Sagui, C.; Babin, V.; Kollman, P. AMBER 10; University
of California: San Francisco, 2008.

(11) Bowers, K.; Chow, E.; Xu, H.; Dror, R.; Eastwood, M.;
Kolossvary, B.; Moraes, M.; Sacerdoti, F.; Salmon, J.; Shan,
Y.; Shaw, D. Scalable Algorithms for Molecular Dynamics
Simulations on Commondity Clusters. Proceedings of the
ACM/IEEE Conference on Supercomputing (SC06), Tampa,
FL, 2006.

(12) Han, G.; Deng, Y.; Glimm, J.; Martyna, G. Comput. Phys.
Commun. 2007, 176, 271.

(13) Skeel, R.; Zhang, G.; Schlick, T. Siam J. Sci. Comput. 1997,
18, 203.

(14) Gans, J.; Shalloway, D. Phys. ReV. E 2000, 61, 4587.

(15) Skeel, R.; Hardy, D. Siam J. Sci. Comput. 2001, 23, 1172.

(16) Engle, R.; Skeel, R.; Drees, M. J. Comput. Phys. 2005, 206,
432.

(17) Biesaideki, J.; Skeel, R. J. Comput. Phys. 1993, 109, 318.

(18) Schlick, T.; Mandziuk, M.; Skeel, R.; Srinivas, K. J. Comput.
Phys. 1998, 140, 1.

(19) Ma, Q.; Izaguirre, J.; Skeel, R. Siam J. Sci. Comput. 2003,
24, 1951.

(20) Barth, E.; Schlick, T. J. Chem. Phys. 1998, 109, 1617.

(21) Sandu, A.; Schlick, T. J. Comput. Phys. 1999, 151, 74.

(22) Izaguirre, J.; Reich, S.; Skeel, R. J. Chem. Phys. 1999, 110,
9853.

(23) Izaguirre, J.; Catarello, D.; Wozniak, J.; Skeel, R. J. Chem.
Phys. 2001, 114, 2090.

(24) Qian, X.; Schlick, T. J. Chem. Phys. 2002, 116, 5971.

(25) Ma, Q.; Izaguirre, J. Multiscale Model. Simul. 2003, 2, 1.

(26) Minary, P.; Tuckerman, M.; Martyna, G. Phys. ReV. Lett.
2004, 93, 150201.

(27) Sweet, C.; Petrone, P.; Pande, V.; Izaguirre, J. J. Chem. Phys.
2008, 128, 145101.

Table 2. Simulation Details as well as Energy
Conservation Measures Econv and R for the Simulations of
Water (section 3) and the Solvated Lysozyme (section 4)a

system split
∆touter

(fs) sword λ(Å)
length
(ns) log(Econv) R (×10-2)

water RESPA1 5 3 2.0 4.0 -4.42 1.37
water RESPA1 5 5 4.0 4.0 -4.42 1.37
water RESPA2 5 3 2.0 4.0 -2.96 21.8
water RESPA2 5 5 2.0 4.0 -4.38 1.48
water RESPA2 5 3 4.0 4.0 -3.75 5.63
water RESPA2 5 5 4.0 4.0 -4.65 0.628
lysozyme NO-SPLIT 1 2.0 -5.58 0.231
lysozyme RESPA1 4 5 4.0 8.0 -4.95 1.02
lysozyme RESPA1 6 5 4.0 8.0 -3.64 10.4
lysozyme RESPA2 4 5 4.0 8.0 -5.23 0.408
lysozyme RESPA2 6 5 4.0 8.0 -4.59 1.35

a Entries are categorized according to the size of the outer loop
time step, the type of non-bonded splitting employed (RESPA1,
RESPA2, or NO-SPLIT), the details of the switching function
(order (sword) and healing length (λ)), and trajectory length.

Econv )
|E - E0|

|E0|
(16)

R )
〈(E - 〈E〉)2〉1/2

〈(T - 〈T〉)2〉1/2
(17)

Molecular Dynamics with Multiple Time Scales J. Chem. Theory Comput., Vol. 6, No. 6, 2010 1803



(28) Stuart, S.; Zhou, R.; Berne, B. J. Chem. Phys. 1996, 105,
1426.

(29) Zhou, R.; Harder, E.; Xu, H.; Berne, B. J. Chem. Phys. 2001,
115, 2348.

(30) Ewald, P. Ann. Phys. 1921, 64, 253.

(31) Frenkel, D.; Smit, B. Understanding Molecular Simulation,
2nd ed.; Academic Press: London, 2002.

(32) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,
10089.

(33) Essmann, U.; Perera, L.; Berkowitz, M.; Darden, T.; Lee, H.;
Pedersen, L. J. Chem. Phys. 1995, 103, 8577.

(34) Luty, B.; Tironi, I.; van Gunsteren, W. J. Chem. Phys. 1995,
103, 3014.

(35) Greengard, L.; Rokhlin, V. J. Comput. Phys. 1985, 60, 187.

(36) Zhou, R.; Berne, B. J. Chem. Phys. 1995, 103, 9444.

(37) Figueirido, F.; Levy, R.; Zhou, R.; Berne, B. J. Chem. Phys.
1997, 106, 9835.

(38) Procacci, P.; Darden, T.; Marchi, M. J. Phys. Chem. 1996,
100, 10464.

(39) Procacci, P.; Marchi, M. J. Chem. Phys. 1996, 104, 3003.

(40) Procacci, P.; Marchi, M.; Martyna, G. J. Chem. Phys. 1998,
108, 8799.

(41) Procacci, P.; Berne, B. J. Chem. Phys. 1994, 101, 2421.

(42) Lau, K.; Alper, H.; Thacher, T.; Stouch, T. J. Phys. Chem.
1994, 98, 8785.

(43) Tuckerman, M.; Yarne, D.; Samuelson, S.; Hughes, A.;
Martyna, G. Comput. Phys. Commun. 2000, 128, 333.

(44) Jorgensen, W.; Chandrasekhar, J.; Madura, J.; Impey, R.;
Klein, M. J. Chem. Phys. 1983, 79, 926.

(45) Rychaert, J.; Ciccotti, G.; Berendsen, H. J. Comput. Phys.
1977, 23, 327.

(46) Our implementation of the quintic spline function has been
ported into the official NAMD2 package, version 2.7b (http://
www.ks.uiuc.edu/Research/namd/, accessed May 2010) and
may be activated by setting “longSplitting)c2”.

(47) MacKerell, A.; Bashford, D.; Bellott, M.; Dunbrack, R.;
Evanseck, J.; Field, M.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.;
Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.;
Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.; Prodhom, B.;
Reiher, W.; Roux, B.; Schlenkrich, M.; Smith, J.; Stote, R.;
Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.;
Karplus, M. J. Chem. Phys. B 1998, 102, 3586.

(48) van Gunsteren, W.; Berendsen, H. Mol. Phys. 1977, 34, 1311.

(49) Watanabe, M.; Karplus, M. J. Chem. Phys. 1993, 99, 8063.

(50) Humphreys, D.; Friesner, R.; Berne, B. J. Phys. Chem. 1994,
98, 6885.

CT100054K

1804 J. Chem. Theory Comput., Vol. 6, No. 6, 2010 Morrone et al.



Milestoning without a Reaction Coordinate
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Abstract: Milestoning is a method for calculating kinetics and thermodynamics of long time
processes typically not accessible for straightforward Molecular Dynamics (MD) simulation. In
the Milestoning approach, the system of interest is partitioned into cells by dividing hypersurfaces
(Milestones) and transitions are computed between nearby hypersurfaces. Kinetics and
thermodynamics are derived from the statistics of these transitions. The original Milestoning
work concentrated on systems in which a one-dimensional reaction coordinate or an order
parameter could be identified. In many biomolecular processes, the reaction proceeds via multiple
channels or following more than a single-order parameter. A description based on a one-
dimensional reaction coordinate may be insufficient. In the present paper, we introduce a variation
that overcomes this limitation. Following the ideas of Vanden-Eijnden and Venturoli on Voronoi
cells that avoid the use of an order parameter (J. Chem. Phys. 2009, 130, 194101), we describe
another way to “Milestone” systems without a reaction coordinate. We examine the assumptions
of the Milestoning calculations of mean first passage times (MFPT) and describe strategies to
weaken these assumptions. The method described in this paper, Directional Milestoning,
arranges hypersurfaces in higher dimensions that “tag” trajectories such that efficient calculations
can be done and at the same time the assumptions required for exact calculations of MFPTs
are satisfied approximately. In the original Milestoning papers, trajectories are initiated from an
equilibrium set of conformations. Here a more accurate distribution, that mimics the first hitting
point distribution, is used. We demonstrate the usage of Directional Milestoning in conformational
transitions of alanine dipeptide (in vacuum and in aqueous solution) and compare the correctness,
efficiency, and statistical stability of the method with exact MD and with a related method.

1. Introduction

Milestoning is a method to calculate kinetics and thermo-
dynamics of molecular systems that evolve on long time
scales typically not accessible for straightforward molecular
dynamics (MD) simulation.1-8

Straightforward molecular dynamics can be used to
compute rate of reactions. In these applications coordinates
and velocities are initiated in the reactant state and the

equations of motion are integrated until the product state is
reached. While considerably promising, there are caveats:
(i) the numerical integration of a typical biomolecular process
is computationally demanding and may not be feasible; (ii)
actual realizations of reactive trajectories are noisy, making
their analysis difficult and may require significant filtering
to recover useful signals.

In Milestoning, the conformational space between the
reactant and the product is partitioned by a set of dividing
hypersurfaces called Milestones (Figure 1). An ensemble of
initial conditions is prepared at each Milestone and trajec-
tories are simulated from each initial point until another
nearby Milestone is reached. These trajectories are signifi-
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cantly shorter and trivially parallelized compared to a reactive
trajectory of the overall process. The efficiency of the
algorithm is discussed in.1

In the original milestoning papers,1,3 a theory that relates
the statistical properties of the short trajectories initiated on
each Milestone and the overall rate was developed. In the
present work we consider a variant of the Markovian limit
of Milestoning,1,2 a method that uses only the first moments
of local first passage time (LFPT) distributions. The advan-
tage of the Markovian limit of Milestoning is that it is easier
to implement and is statistically more stable. As we will show
in section 2.1, it calculates the overall mean first passage
times (MFPT) accurately, given that certain assumptions are
met. Milestoning in its complete settings (non-Markovian)
provides a useful alternative if more detailed understanding
of the reaction process is desired, for example if the reaction
is nonexponential in time.

Vanden-Eijnden et al.,4 considered reaction dynamics with
overdamped Langevin. It was shown that if Milestones are
chosen as isocommittor surfaces, i.e. surfaces for which the
probability of reaching the product state before the reactant
is constant, then Milestoning calculation of the MFPT using
Brownian dynamics is exact. However, determination of
exact isocommittor surfaces can be very difficult in practice.

Other limits in which Milestoning is expected to be
accurate are available for systems near equilibrium. As
outlined in the original Milestoning papers,1,3 even when
other surfaces are used (surfaces that are not isocommittors)
Milestoning can still work well. If successive crossing events
of Milestones are sufficiently separated in time to “lose”
velocity memory Milestoning was illustrated to provide
accurate results. This assumption is achieved in practice by
placing Milestones sufficiently far from each other such that
the average termination time of trajectories is at least a few
hundred femtoseconds.1

In section 2, we propose a variant of Milestoning in the
Markovian limit, which we call Directional Milestoning

(DiM), the dividing hypersurfaces are redefined in more than
one dimension to capture features of the reaction (e.g.,
multiple reaction channels or multiple collective variables)
that at the same time maintain the concept of Milestone
separation, for example, trajectories initiated on any Mile-
stone have time to “lose memory” before terminating on
other Milestones.

The original Milestoning approach approximates the initial
ensemble on each hypersurface by equilibrium distribution.
To be exact the initial distribution at a Milestone must be
the first hitting point distribution (FHPD). A first hitting point
is a phase space point on the Milestone crossed for the first
time by a trajectory arriving from a nearby hypersurface.
The distribution of these phase space points is complex and
a closed form of it is known only for overdamped Langevin
dynamics in low dimensions.4

In recent work,7 Vanden-Eijnden and Venturoli proposed
a modification of Milestoning that avoids a generation of
initial ensembles on each of the dividing surfaces. As we
discuss later their approach is more accurate compared to
the original Milestoning for the generation of the FHPD.
Memory loss, however, is harder to control in the new
approach. To improve the accuracy of the original Mileston-
ing approach, while retaining some of its advantages we
propose in section 2.4 another way to approximate FHPD,
which is better than the original Milestoning.

In section 3, we illustrate the Directional Milestoning
(DiM) for the calculation of MFPT of a conformational
transition of alanine dipeptide, both in vacuum and in water.
We compare Directional Milestoning with exact Molecular
Dynamics and with the related method Markovian Mileston-
ing with Voronoi Tessellation (MMVT).7 We illustrate that
as the complexity of the underlying energy surface increases,
DiM becomes more effective. Discussions and conclusions
are in presented section 4.

2. Directional Milestoning: Theory

2.1. Definition of Milestones in Higher Dimensions. We
discuss below an extension of Milestoning that avoids the
use of a reaction coordinate. Instead of placing hypersurfaces
orthogonal to a one-dimensional curve as introduced in the
original papers,1,3 we define the interfaces (Milestones) based
on a set of coordinates (images) that sample the conforma-
tional space of the biophysical process under consideration.
(Two of the images define the reactant and the product state.)
These images may be obtained from long time simulations,
high temperature trajectories, replica exchange simulations,
etc., as discussed later in examples in the article. Having N
images X1, ..., XN placed in the conformational space, we
intuitively want to arrange Milestones as interfaces between
the images, which is the approach taken in the Voronoi
Tessellation of Markovian Milestoning.7 However, we aim
to place the Milestones in conformational space in such a
way that a trajectory initiated on any Milestone has time
and space to “lose memory” of its starting point before
terminating at a different Milestone. A formal definition of
“losing memory” will be given in the following section. For
each pair of images Xi and Xj, we define the Milestone Mifj

Figure 1. A schematic arangement of Milestones (dashed
lines) in a two-well potential. Also shown is a trajectory (dotted
line) starting on a second Milestone and terminating on the
first one.
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as a set of conformational points on which a trajectory enters
the region of image Xj from the region of image Xi. Formally,
the above intuitive requirements on Milestone placement can
be accomplished in several different ways. We define a
Milestone Mifj as

where d(X,Y) is a distance function of images X and Y and
∆i ) minj*id(Xi,Xj). The arrangement (eq 1) has a few
important properties discussed in detail in section 2.3. We
name some of the properties here, referring the formal proofs
to section 2.3: A Milestone Mifj is located in the region
between the images Xi and Xj and is always closer to the
image Xj. The Milestone Mifj does not intersect any of Mifl

Milestones (for l * j), and there is a finite separation in
conformational space between the Milestones Mifj and Mlfi.
See Figure 2 for an example of the proposed arrangement.
As shown in the figure, the outgoing (black) Milestones
bound the region of the central image and all the incoming
(gray) Milestones are located within this region with a
minimal distance to any of the outgoing Milestones.

The proper selection of the conformational images X1, ...,
XN will be explained in more detail in section 2.3; for now
we assume their arbitrary placement. If ∆i were omitted in
the above definition (∆i ) 0), then the set of Milestones Mifj

is reduced to the Voronoi tessellation proposed in refs 7 and
8; we refer to this arrangement as Markovian Milestoning
with Voronoi Tessellation [MMVT] throughout this paper.
In the MMVT arrangement, the Milestone Mifj is equivalent
to the Milestone Mjfi and the only information they preserve

is the identity of last crossed Milestone, not the direction of
such a crossing. (In a private communication, Vanden-
Eijnden disclosed an extension of MMVT to make the
Milestones velocity dependent.)

It is important to emphasize that the proposed placements
of Milestones is not a tessellation. In accord with the
definition of the original Milestoning, a trajectory is identified
by the last Milestone that it passes and not by its actual
current position. A memory is carried out in time until the
trajectory crosses another interface (Milestone).

Trajectories from Xi to Xj can be fundamentally different
from trajectories from Xj to Xi. To exploit this observation it
is useful to make the Milestones dependent on the direction.
We therefore call Milestones defined according to eq 1
Directional Milestones. The role of the additional flexibility
offered by ∆i is to avoid counting rapid transitions between
interfaces because of spatial proximity of Milestones. As a
result, the Milestones defined by eq 1 depend on more than
the coordinates alone. This is consistent with the notion of
a Milestone Mifj (Mkfj) as a state of a trajectory that arrives
from the region Xi (Xk) to the region of image Xj. Hence the
definition of a Milestone is extended to include information
about the previous assignment of the trajectory. If the system
is assigned to a region Xi0 at time 0 then by following a
trajectory of the system one can deterministically identify
the sequence of Milestones the trajectory has passed through
Mi0fi1, Mi1fi2, Mi2fi3, ..., MiK-1fiK.

2.2. Calculation of Mean First Passage Times. In the
rest of the manuscript, we will use Roman subscripts to
denote image index (as was done in the previous section)
and Greek letters to denote Milestones. Consider the mean
first passage time (MFPT) from any Milestone R to a given
target Milestone �. We define it as follows: a trajectory is
assigned to a Milestone R if the last Milestone it has passed
through is R. One-step transition from a Milestone R to a
Milestone � (� * R) is a change of assignment of a trajectory
from R to �. This step is clearly on a coarse Milestoning
level and does not mean a single Molecular Dynamics step,
which we will call a time-step. If such an event is possible,
we say that R connects to �. Note that by the definition given
in eqs 1, if R connects to �, the second index of R (e.g.,
Mifj) must be equal to the first index of � (Mjfk). The first
hitting point distribution on �, F�(p), is the distribution of
phase space points (denoted by p) at which an equilibrium
trajectory passes through � numerous times, while the
previous Milestone it passes through was not �. In further
discussion, only the relative weight of trajectories that pass
through � is important so we can choose to normalize F�(p)
such that ∫F�(p)dp ) 1. We denote by 〈τR�(p)〉 the mean
time of all trajectories that start from the phase space point
p in R and terminate on Milestone � (possibly crossing other
Milestones on the way). Integrating the last entity over p,
weighting it by the probability that p is a phase space point
at which an equilibrium trajectory hits � for the first time,
∫〈τR�(p)〉 FR(p) dp ≡ 〈τR�〉, we obtain the MFPT from R to
�.

Let the distribution of one-step transitions from R to � be
TR�(p,q,t), where p is the phase space point at which a
trajectory starts in R and q is the phase space point at which

Figure 2. Example of Milestones according to definition 1.
Conformational images are represented as black dots; Mile-
stones related to the central image are displayed as dashed
lines. A trajectory coming to the central region (gray, dotted)
terminates on one of the gray Milestones (depending on the
previously assigned region). A trajectory reinitiated on any of
the gray (incoming) Milestones leaves the region through one
of the black (outgoing) Milestones.

Mifj ≡ {X|d(X, Xi)
2 ) d(X, Xj)

2 + ∆i
2 and ∀kd(X, Xj) e

d(X, Xk)} (1)
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the trajectory changes its assignment to � after time t.
TR�(p,q,t) is normalized in such a way that if we integrate
over t and q we get conditional probability of a trajectory
reaching � in one step given that it originates from p in R:
∫∫TR�(p,q,t) dqdt ) P(�|R,p), or alternatively ∑�∫∫TR�(p,q,t)
dqdt ) 1. Note that by the definition of trajectory assignment,
TRR(p,q,t) ) 0 for all p and q (since a trajectory cannot
change its assignment from R to R).

Assuming that the phase space point p(t + dt) can be
determined from p(t) only, as is true for most microscopic
dynamics (e.g., Newtonian, or Langevin dynamics, but not
Generalized Langevin dynamics) we make the following
argument: The MFPT from R to �, 〈τR�〉, is defined as the
weighted average of termination times of trajectories from
R to �. Each trajectory, starting at p in R jumps in one step
to some other Milestone γ (γ * R) at phase point q and
then in multiple steps (possibly 0, if γ ) �) continues to �.
Consider all the trajectories that jump in one-step from p in
R to q in γ exactly in time t and then eventually reach � (in
potentially different total time). Since the microscopic
dynamics is Markovian we can replace the contribution of
these trajectories to 〈τR�〉 by (t + 〈τγ�(q)〉) weighted by sum
of the weights of all of them (which is FR(p)TRγ(p,q,t))). By
doing this for all possible combinations of γ and q we get
the following equation:

The first term of the above equation can be reduced as

where 〈tRγ(p)〉, 〈tR(p)〉, and 〈tR〉 are average times of one-
step transitions from p ∈ R to γ, from p ∈ R to any other
Milestone, and from R to any other Milestone (averaged over
p), respectively. In the second term of eq 2, the average time
from q ∈ γ to � is weighed by a factor depending on the
phase space point p ∈ R. To overcome this problem, we use
the following assumption: The distribution at which any
Milestone γ is hit does not depend on the Milestone to which
the trajectory was assigned before the hit.

It is easier to illustrate the properties of eq 4 if we consider
a one-dimensional arrangement of Milestones in which the

forward and the backward Milestones occupy the same
spatial coordinates. Consider a Milestone R that is pointing
forward and is therefore denoted for the clarity of this
discussion by R+. There are two Milestones that initiate
trajectories that may terminate at R+. They are (R - 1)+
and (R - 1)-. Hence, they occupy the same place in space
but have their velocities pointing in the opposite directions.
The assumption of eq 4 states that it does not matter if we
start at (R - 1)+ or at (R - 1)-, both Milestones will
generate the same hitting point distribution on R+. If the
initial direction of the velocity decorrelates quickly, there
should be no difference in the results from Milestone (R -
1)+ and (R - 1)-. In this case, the assumption formulated
in eq 4 will be satisfied. Indeed, we observed empirically in
ref 9 that even the usual Milestoning works well when the
velocity decorrelates. This empirical finding is now formu-
lated mathematically. In higher dimension, we will also
require spatial decorrelation.

The multiplicative factor in the above equation is deter-
mined by the fact that if both sides of eq 4 are integrated
over q, the left side equals to 1 and the right side to P(γ|R);
the conditional probability that if a trajectory changes its
assignment from R it changes to γ. Therefore using the above
assumption the second term of eq 2 reduces to ∑γP(γ|R)〈τγ�〉,
and we obtain the final form for the MFPT.

The set of eq 5 is supported by boundary conditions 〈τ��〉
) 0, 〈t�〉 ) 0, and ∀γ P(γ|�) ) 0. It is a set of linear
equations for all the 〈τR�〉 that can be solved by any standard
linear solver. The size of the problem (the number of
Milestones) never exceeded a few hundreds in our hands.
Equation 5 can be directly generalized for considering more
than a single target Milestone (e.g., all incoming interfaces
to the folded state of a peptide). Alternative equations
equivalent to eq 5 were derived in refs 1 and 4. These
equations are independent of the type of microscopic
dynamics that we use (e.g., overdamped Langevin or
Newtonian). The system of linear eqs 5 relates the overall
rate (τ’s) with the local kinetics information (〈tR〉 and P(γ|R)).
Milestoning collects this local information in a more effective
way than running an ensemble of trajectories from R to �.
On each Milestone R, NR phase space points are sampled
from the FHPD FR (see section 2.4 for details). As a second
step, each of the sampled phase space points is propagated
in time until a connected Milestone is reached. The termina-
tion times of these trajectories are typically several orders
of magnitude shorter than the overall MFPT of the system.
Furthermore the trajectories between Milestones are inde-
pendent of each other and thus can be run in parallel. For
each Milestone γ connected to R, we record NRγ, the number
of trajectories that are initiated on R and terminated on γ.
We also record tjR, the mean termination time of all NR

trajectories regardless of their terminal Milestone. The
collected information {NR,tR} is used to estimate the required
entities for eq 5 as

〈τR�〉 ) ∑
γ

∫ ∫ ∫ FR(p)TRγ(p, q, t)(t + 〈τγ�(q)〉)dpdqdt

) ∑
γ

∫ FR(p)(∫ ∫ TRγ(p, q, t)tdqdt)dp

+ ∑
γ

∫ 〈τγ�(q)〉(∫ ∫ FR(p)TRγ(p, q, t)dpdt)dq

(2)

∑
γ

∫ FR(p)(∫ ∫ TRγ(p, q, t)tdqdt)dp ) ∑
γ

∫ FR(p)

( ∫ ∫ TRγ(p, q, t)tdqdt

∫ ∫ TRγ(p, q, t)dqdt
∫ ∫ TRγ(p, q, t)dqdt)dp )

∑
γ

∫ FR(p)(〈tRγ(p)〉P(γ|R, p))dp )

∫ FR(p)( ∑
γ

〈tRγ(p)〉P(γ|R, p))dp ) ∫ FR(p)〈tR(p)〉dp ) 〈tR〉

(3)

∀R, γ:Fγ(q) ∝ ∫ FR(p)TRγ(p, q, t)dpdt (4)

〈τR�〉 ) 〈tR〉 + ∑
γ

P(γ|R)〈τγ�〉 (5)

P(γ|R) = NRγ/NR and 〈tR〉 = tjR (6)
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In practice instead of using eq 6, we employ Bayesian
inference on the collected data to calculate the MFPT
supported by the data, as well as an estimate of the statistical
error due to the finite size of collected data. This procedure
is described in detail in Appendix B.

2.3. Properties of Directional Milestones. The use of
eq 5 for calculating MFPT depends on validity of the
assumption expressed in eq 4. It has been shown in4 that
the assumption formulated in eq 4 holds if overdamped
Langevin dynamics is used, and the Milestones are chosen
as isocommittor surfaces. To our knowledge, there is no
efficient algorithm that identifies exact isocommittor surfaces
and scales moderately with system size. However, there are
other ways of satisfying eq 4. Instead, we base our strategy
on selecting Milestones according to eq 1, making sure that
Milestones are sufficiently separated to allow for a memory
loss of trajectories as outlined in the arguments of ref 1.
Consider a pair of connected Milestones Mifj, Mjfk (defined
by coordinate images Xi, Xj, and Xk). Let Sjk be a hyperplane
perpendicular to the line segment Xj - Xk and passing
through its midpoint. From eq 1 that defines Mifj we know
that each point on Mifj is closer to Xj than to Xk. Thus the
Milestone Mifj lies on the Xj’s side of Sjk. It follows from
Lemmas A.1 and A.2 in Appendix A that Sjk and Mjfk are
parallel, Mjfk lies on the Xk’s side of Sjk, and that d(Sjk, Mjfk)
) (∆j

2)/(2d(Xj, Xk)). Therefore d(Mifj, Mjfk) g (∆j
2)/(2d(Xj,

Xk)). This minimal separation of connected Milestones is a
property of Directional Milestoning that allows for some
velocity relaxation to at least approximately satisfy the
assumption described in eq 4. Note that the lower bound for
the distance d(Mifj, Mjfk) is a function of distances between
the images that we place at will. Minimal separation of any
two images places a lower bound on ∆j’s; additionally if
one guarantees for each connected pair Mifj, Mjfk that d(Xj,
Xk) is about ∆j then d(Mifj, Mjfk) ≈ ∆j/2.

2.4. Sampling of the First Hitting Point Distribution. The
first step of Milestoning is to sample the initial conditions
on each Milestone R from the first hitting point distribution
FR(p). An analytical expression for FR(p) is in general
unknown. In ref 4, the authors provided the formula FR(x)
∝ e-�V(x)|∇q(x)| for the case of overdamped Langevin
dynamics with Milestones being placed as isosurfaces of the
committor function q(x). The last formula includes the
gradient of committor function ∇q(x) which is difficult to
get in high dimensions.

Instead of computing FR(p) exactly (no exact expression
is available for Newtonian dynamic), we approximate it.
First, phase space points are sampled from the equilibrium
distribution at Milestone Mifj. It can be done either by
running an MD simulation constrained to the Milestone,1,3

or by employing the Umbrella Sampling technique (see
appendix C and ref 10). The second step involves filtering
each of the sampled phase points to determine those that
are indeed first hitting events of Mifj. Exact verification
tracks each of the sampled phase space points p back in time
and tests termination on one of the incoming Milestones to
the cell Xi (Mkfi) before the trajectory intersects any of Mifl.
(If Mifj itself is crossed before any of Mkfi, p is not the first
hitting event of Mifj, it is at least a second hit of Mifj; if

Mifl, l * j, is crossed before any of Mkfi then the trajectory
must have entered the cell of Xl before reaching p; therefore,
p cannot be the first hitting event of Mifj). Tracking the
trajectory back in time to any of the Milestones Mkfi is
similar in spirit to Transition Interface Sampling,11-13 (TIS),
the difference is that a TIS trajectory is propagated back in
time until the reactant or the product state is hit. In DiM,
we perform significantly shorter backward verification,
applicable only for equilibrium processes. TIS is exact;
however, it is more expensive, since in Milestoning we still
exploit the use of trajectory fragments. Trajectory fragments
are easier to parallelize, and they can lead to implicit long
time trajectories, while in TIS, long time individual trajec-
tories need to be computed explicitly.

To retain high efficiency we track the trajectory back in
time only until it reaches an empirical test boundary that is
placed at a distance d on the Xi’s side of the target Milestone
Mifj (d being smaller than or equal to the minimal distance
to any of Mkfi from Mifj). If the trajectory reaches the
checking boundary without recrossing any other Milestone
Mifl, we assume that p is a first hitting event. Otherwise we
reject it. The procedure is schematically illustrated on Figure
3.

In principle, we can follow the trajectory back in time until
one of the incoming Milestones to Xi (Mkfi) or any of the
outgoing Milestones from Xi (Mifl) is hit (a comment by
Giovanni Ciccotti). By performing this complete verification
the prepared ensemble on each Milestone would be the exact
first hitting point distribution. However, the complete
verification of each of the sampled phase points roughly
doubles the overall computational cost (assuming reasonable
acceptance ratio). The result of the more expensive exact
verification will be reported elsewhere; in this paper we
report results and analysis of the more efficient (but ap-
proximate) checking protocol.

3. Applications of Directional Milestoning

3.1. Alanine Dipeptide Solvated in Water. To demon-
strate an application of Directional Milestoning, we compute
MFPT of the transition between R helix and � sheet
conformations in solvated alanine dipeptide (Figure 4). The
thermodynamics and kinetics of alanine dipeptide has been
investigated in several studies.1,8,14-16 In aqueous solution,
two dihedral angles, φ and ψ, shown in Figure 4, are
adequate coarse variables for the dynamics of the peptide.
We therefore use a 2-norm distance in the reduced space of
φ and ψ as the distance metric in the definition of Milestones
(periodicity of the angles was taken into account in the
calculation of a distance between two torsion angles).

The new module for Directional Milestoning was created
in the program MOIL,17 and is available at https://wiki.ice-
s.utexas.edu/clsb/wiki. The peptide molecule is solvated in
a periodic box (20 Å)3 of 248 TIP3P water molecules. The
OPLS force field18 is used with electrostatics real space cutoff
of 9 Å augmented with Particle Mesh Ewald summation.
van der Waals interactions are cut at a distance of 8 Å. All
calculations were run in NVT ensemble at a temperature of
303 K by employing a weak Andersen thermostat that acts
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only on the center-of-mass motion of the water molecules.19

The probability of velocity resampling was set to 5 × 10-4

per fs. For a water box of this size, an average of 13 water
molecules had their velocities resampled in a 100 fs interval.
This weak coupling does not change the transition rate
obtained from NVE (Newtonian) simulations (with initial
conditions sampled from the NVT ensemble). The free
energy surface as a function of the two dihedral angles (φ,
ψ) is shown in Figure 5. It was calculated from statistics of

a 340 ns long MD simulation. The white region of the map
was not visited by the trajectory. There are two local free
energy minima corresponding to an R helix conformation
(φ, ψ ) -100, -40) and to a � sheet conformation (φ, ψ )
-100, 140).

The height of the free energy barrier between the two
metastable regions at 303 K is less than 2kBT and the
transitions between the metastable states are rapid on the
trajectory time scale so the MFPTs can be estimated from
straightforward MD simulations directly. We have performed
five independent MD simulations of 68 ns. In each of the
simulations, more than 1000 transitions between the meta-
stable regions occurred. The MFPT of R f � transition is
66.4 ps ((2.7 ps) and that of the opposite transition is 53.8
ps ((4.6 ps). We set up the Milestoning calculation by
placing six images in the conformational space in the
positions φi,ψi ) -100°, - 240° + 60°i, (i ) 1, ..., 6). The
positions of the images were not optimized. They were placed
equidistantly in the region of conformation space that is
accessible to the molecule. Table 1 shows the results of the
Milestoning calculations for this system; it also includes the
results of Markovian Milestoning with Voronoi Tessellation
method.7 The MMVT calculation was performed with the
same settings as for DiM, with the exception of the image
placement; images for MMVT calculation were placed at
φi′,ψi′ ) -100°, - 210° + 60°i (for i ) 1, 2, ..., 6), so that
the Milestones are placed in the same positions as in
Directional Milestoning.

Note that the employed dynamics is almost deterministic
and thus a trajectory reflected from an interface (procedure
required in MMVT) would approximately track itself back
in time. Therefore we have slightly modified the MMVT
protocol in a way suggested by Vanden-Eijnden in a private
communication: instead of reversing the velocities of all the
degrees of freedom at a cell interface, only the velocities of
peptide atoms are reversed. This modification should not

Figure 3. Illustration of sampling of the first hitting point
distribution of trajectories initiated on the lower gray Milestone
and terminating on the top (target) Milestone. The FHPD on
the target Milestone (blue) is centered in the left basin, which
is different from the equilibrium distribution (red). The FHPD
is approximated by sampling phase space points from the
equilibrium distribution and following each of them back in time
until it hits the target Milestone on which it was initiated (the
point is rejected) or the test boundary shown as a dashed
gray line (it is accepted). Tracking of three phase space points
is shown; the algorithm tracks only the black parts of the
trajectories. Two of the points are accepted; one of them,
however, is accepted by a mistake. The point is accepted
because the test boundary was reached, however if the
trajectory were checked further on (the red part) it would have
been detected that the trajectory turns back and is not coming
from the lower Milestone. Because of these false positive
samples, the resulting distribution (green) only approximates
FR(p) (blue). As the test boundary approaches the originating
Milestone (lower gray), the sampled distribution approaches
the true FHPD.

Figure 4. Alanine dipeptide.

Figure 5. Free energy profile of alanine dipeptide as a
function of the two dihedral angles φ and ψ. It was calculated
from statistics of a 340 ns long MD simulation. Images for
DiM calculations are placed at the positions of the red
numbers and for MMVT calculation at the location of the black
points. Both algorithms with these placement of images infer
the Milestones in the positions of the dashed lines; in DiM,
however there are two directional Milestones for each line.
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influence the statistics of observed fluxes through the
interfaces since only the peptide degrees of freedom are used
in the definition of cell boundaries.

Both methods, DiM and MMVT, perform well in this
scenario, though MMVT is more efficient for this simple
system. If enough sampling is done, both techniques provide
reasonable estimates of MFPTs between the metastable
regions, the systematic error is lower for MMVT (6% and
10%) as compared to our method (10% and 18%). Analysis
of MMVT on the same system was performed recently.8 A
different force field was employed in ref 8, and the MFPT
reported differs by a factor of 2 from our calculations;
however the relative error of MMVT for the reported R f
� transition is about 6%, which is comparable to our result.
Results of �f R transition were not reported in ref 8. Table
1 shows that MMVT needs about 2-3 times less CPU time
compared to DiM to converge. DiM requires more computa-
tions in these setting since each interface of MMVT is
effectively doubled for the two different directions. Further-
more, additional computation is needed in DiM to sample
initial phase space points on each interface. In this one-
dimensional setup of Milestones with relatively large separa-
tion between Milestones and low free energy barrier, MMVT
is more efficient and as accurate as DiM. However, we will
show below that with smaller separation between the
interfaces, multidimensional arrangement of milestones, and
rougher energy landscapes, DiM is better.

Even though previous Milestoning studies calculated
accurately MFPTs on alanine dipeptide, memory effects in
the system are not negligible. First hitting point distributions
(in terms of φ angles) for the Milestones M4f5 and M6f5 are
shown on Figure 6. There is a noticeable difference between
distributions of first hitting points on the Milestone M4f5

and on the Milestone M6f5. As shown on the figure, the
approximate sampling described in section 2.4 distinguishes
the first hitting point distributions arriving from different
directions to the region of image X5 reasonably well.

In Table 2, we examine the use of directional Milestones
on this system. The table shows that transitions between the
six Milestones (if direction is not part of the description)
are not Markovian. If no memory effects were present in
the system then the probability of transiting to Milestone i
+ 1 from Milestone i would not depend on the Milestone
visited before i, that is the second and the forth columns of

Table 2 would be the same within the error bars. We however
see differences of up to 21% (for i ) 5) or by a factor of up
to 2.2 (for i ) 1). One can see that the values of these relative
probabilities estimated by Directional Milestoning (columns
3 and 5 in Table 2) are in good agreement with the true
values.

In the second experiment, we examine both methods (DiM
and MMVT) on the same system with Milestones in more
than one dimension. This experiment is performed to
empirically illustrate that placing Milestones in a nonlinear
arrangement does not compromise accuracy of DiM calcula-
tions. Images are placed in a two-dimensional grid covering
the accessible space at the target temperature (conformations
with torsional angle φ < 0). For DiM, 18 images are placed
in the positions marked 1, ..., 18 on Figure 7a). Each image
has 8 incoming Milestones and 8 outgoing Milestones
(displayed in solid and dashed on Figure 7a) respectively).
We calculated the MFPT from M12f11 (or M10f11) to the
union of M10f9 and M8f9 for the �fR transition. The MFPTs
from these two Milestones differ from each other by about

Table 1. Results of the MFPT Calculations on Alanine Dipeptide Solvated in Water with 6 Cells Placed as Shown on Figure 5a

method MFPT [ps], (sd [ps]) Rf�/�fR total cost [ns]

straightforward MD 66.4 (2.7)/53.8 (4.6) 68
DiM, 100 trajectories/Milestone 66.5 (11.1)/39.0 (4.6) 5.0 + 0.6 ) 5.6
DiM, 250 trajectories/Milestone 57.7 (5.4)/46.5 (3.6) 12.5 + 1.0 ) 13.5
DiM, 500 trajectories/Milestone 61.2 (4.2)/46.8 (2.6) 22.8 + 2.0 ) 24.8
DiM, 1000 trajectories/Milestone 57.0 (2.7)/45.2 (1.8) 46.1 + 3.9 ) 50.0
DiM, 5000 trajectories/Milestone 59.5 (1.3)/44.2(0.8) 230 + 10.1)240.1
MMVT, 0.4 ns/cell 60.2/43.9 2.4
MMVT, 0.8 ns/cell 57.2/43.7 4.8
MMVT, 1.6 ns/cell 63.2/41.2 9.6
MMVT, 3.4 ns/cell 63.4/53.2 20.4
MMVT, 12 ns/cell 62.4/48.3 72.0

a Exact MFPTs were calculated by running five 68 ns long MD trajectories. The standard deviation of predicted MFPT of DiM and MD
calculations are given in the brackets. For DiM, standard deviation was calculated from a single execution by using Bayesian inference
(details in Appendix B). The total cost for DiM is given as a sum of the simulation time of all trajectories and the simulation time used for
preparation of initial distributions.

Figure 6. Distributions of φ angle of the first hitting point
conformations of the region of image X5 (located at ψ ) 80°):
distributions observed in a long MD simulation for conforma-
tions arriving to the hypersurface at X5 from the hypersurface
of X4 (black solid), or from that of X6 (gray solid). Distributions
sampled on the Milestone M4f5 (black dashed) and the
Milestone M6f5 (gray dashed).
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0.3 ps, and we report their average in Table 3. The opposite
transition (R f �) was defined in the equivalent way.

For MMVT, the images were placed in slightly different
positions than for DiM (see Figure 7b) such that the

Milestones inferred by the Voronoi Tessellation are in
equivalent positions to those used in Directional Milestoning.
For the R f � transitions, we calculated the MFPT of
trajectories starting from the two white Milestones in Figure
7b (M2T3 and M8T9) and terminating at the union of the red
Milestones. MFPT of the transitions from these two starting
points differ by less than 0.2 ps so only their average is
reported in Table 3. The � f R calculation was performed
in the equivalent way (from the two central Milestones in
the � sheet conformation (ψ ) 140°) to the union of all the
Milestones with ψ ) -40°).

The results of both methods are listed in Table 3. The
accuracy of Directional Milestoning is not compromised by
multidimensionality; hence DiM works well for higher
dimensions or higher connectivity of Milestones. The relative
error of the MMVT method increased to 33% (31%). We
think that this is mainly because of the corners between
Milestones in the MMVT arrangement that cause rapid
termination times between nearby Milestones and unwanted
correlations between touching Milestones. Evidence of this
can be seen in Figure 8.

3.2. Alanine Dipeptide in Vacuum. In vacuum, there are
two stable conformers C7eq and Cax of alanine dipeptide
(Figure 9). The state C7eq is further split into two substates
denoted by C7eq and C7eq′ (located at X26 in Figure 9b)
separated by a small barrier. We calculate the MFPT of
transition from C7eq to Cax at two different temperatures, 400
and 350 K, using Langevin dynamics. This is performed by
calculating MFPT starting from each of the incoming
Milestones to C7eq region (green on Figure 9) and considering
union of the incoming Milestones to the region Cax (red on
Figure 9) as the final state. The MFPT is not sensitive to
exact identity of the starting Milestone (variation of less than
2%) therefore an average MFPT from all green Milestones
is considered. The friction constant of Langevin dynamics
was set to 30 ps-1.

3.2.1. Image and Cell Generation. The images were
generated by the following expansion. We start with the set
of images S ) {X1,X2}, where X1 is a conformation located
at Cax and X2 at C7eq. Then we iteratively pick an image X
from the set S and “expand” it: We launch trajectories starting
from X with randomly initiated velocities and run each of
these trajectories until it departs at least a prespecified
distance δ from X. Then we cluster the set of end points of
these trajectories to existing images in S and potentially add
new images to the set S if there are end points that are farther

Table 2. Dynamics of the Alanine Dipeptide System Are Not Fully Reducible to a Markov Jump Process between Six
Hypersurfaces Shown on Figure 5a

i P(ifi + 1|i - 1fi) NMi-1fiMifi+1/NMi-1fi P(ifi + 1|i + 1fi) NMi+1fiMifi+1/NMi+1fi

1 3.9 3.6 8.6 8.3
2 82.4 84.8 89.4 92.0
3 84.9 88.1 91.0 88.0
4 39.0 37.5 49.0 50.0
5 39.2 41.4 60.6 50.5
6 26.3 32.0 35.0 34.1

a The probability of jumping to the Milestone i + 1 from the Milestone i depends on the Milestone visited before i. Probabilities (from a
long MD trajectory) of jumping from i to i + 1i f the Milestone i - 1(i + 1) was visited before the hypersurface iare listed in the second
(fourth) column. The third and fifth columns list these probabilities as measured by DiM calculation by starting 1000 trajectories from each
Milestone. Note that in contrast to DiM, the original Milestoning assumes that P(ifi + 1|i - 1fi) ) P(ifi + 1|i + 1fi).

Figure 7. Placement of images on a two-dimensional grid.
(a) DiM settings: total of 18 images, located at position of
numbers in the plot, are placed in a two-dimensional grid. For
two of the images, X11 and X14, the outgoing (dashed) and
incoming (solid) Milestones are shown. (b) Arrangement for
MMVT. Twenty-four images are placed in the conformational
space so the resulting milestones are in the positions
equivalent to DiM. Average of MFPT from the two white
Milestones to any of the red Milestones is reported in the
results for R f � transition. .
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than δ from all images of S. We repeat this process until no
new images are generated, that is, we have tried launching
trajectories from all images in S and all end coordinates are
in S. There are three parameters in this algorithm: (i) the
distance cutoff δ, (ii) the number of expanding trajectories
Ne, and (iii) the clustering algorithm employed. For alanine
dipeptide, we have used expectation-maximization as a
clustering algorithm,20 with Ne set to 400 and two different
values of δ, δ1 ) 0.6 Å and δ2 ) 0.4 Å. The root mean

squared distance after optimal overlap21 (rmsd) is the distance
metric (the rmsd between X1 and X2 is 1.25 Å) for the
purposes of clustering as well as the distance function in
the definition of Milestones (1).

3.2.2. Results for Alanine Dipeptide in Vacuum. By using
different values for δ we obtained sets of images of size 24
(for δ1) and 63 (for δ2); both are shown on Figure 9. The
tessellations shown in black in this figure are only ap-
proximate since they are based on the Euclidean distance in

Table 3. Results of the MFPT Calculations on Alanine Dipeptide Solvated in Water with 18 Cells Placed As on Figure 7aa

method MFPT [ps], (sd [ps]) R f �/� f R total cost [ns]

straightforward MD 66.4 (2.7)/53.8 (4.6) 68
DiM, 100 trajectories/Milestone 68.2 (10.0)/56.9 (8.9) 10.0 + 2.6 ) 12.6
DiM, 300 trajectories/Milestone 63.5 (4.9)/56.6 (4.1) 31.1 + 8.7) 39.8
DiM, 1000 trajectories/Milestone 62.8 (2.5)/53.2 (1.6) 103 + 26)129
DiM, 2000 trajectories/Milestone 65.7 (1.6)/52.2 (1.1) 207 + 52)259
MMVT, 5 ns/cell 48.6/37.0 120
MMVT, 10 ns/cell 44.3/37.1 240

a Standard deviations are in the brackets. Total cost for DiM is given as a sum of the simulation time of all trajectories and the simulation
time used for preparation of the initial ensemble on each Milestone.

Figure 8. First hitting point distributions. (a) For DiM,
distribution of ψ torsional angle of conformations arriving to
the Milestone M4f10 from the Milestones M9f4 (black, solid),
M11f4(black, dashed), M10f4 (gray, solid), M3f4 (gray, dashed),
and M5f4 (black, dotted). (b) For MMVT, distribution of ψ
torsional angle of conformations arriving to the Milestone M3T9

from the Milestones M10T9 (black, solid), M4T3 (black, dashed),
M8T9 (gray, solid), M2T3 (gray, dashed), and M15T9 (gray,
dotted). Note that the target Milestone M3T9 in the MMVT
arrangement is in the same position as M4f10 in the DiM
arrangement, only shifted by -30° in ψ direction.

Figure 9. Adiabatic φ, ψ energy map. The energy is
minimized, while constraining the φ and ψ dihedrals to
specified values. Placement of (a) 24 images, (b) 63 images
in the conformational space based on the algorithm described
in section 3.2.1 is shown. Also displayed is the Voronoi
Tessellation based on the periodic Euclidean metric in the
reduced space of φ and ψ torsions.
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(φ,ψ) space, where the real interfaces (Milestones) are
defined using the rmsd distance. The MFPT of the transitions
between the metastable conformations are significantly longer
than those in the solvated peptide because of higher free
energy barriers. Tables 4 and 5 summarize the results of the
Milestoning calculations in this system. At the high tem-
perature (400 K) both methods, DiM and MMVT, predict
accurate MFPT from C7eq to Cax (with systematic error of
about 10%). MMVT needs to run about 1.5 µs MD
simulations to obtain converged results, while DiM requires
about 2.5 µs. Both of them provide significant speed up
against straightforward MD simulation, even though a rough
estimate of MFPT of the C7eq to Cax transition can be obtained
by running about 11 independent MD simulations (equivalent
to 4 µs of the total simulation time); however, both MMVT
and DiM can be trivially parallelized to thousands of CPUs,
shortening the actual time to perform the calculation.

When the temperature is lowered to 350 K (see Table 5)
the C7eq to Cax transition is slower with MFPT of about 2.0
µs. As listed in Table 5, Directional Milestoning calculates
the MFPT with systematic error of about 15% with as few
as 7.5 µs of total simulation time. That is significant speedup
compared to straightforward MD since DiM can be easily
parallelized on thousands of processors. MMVT fails to
calculate the MFPT accurately. The main reason for this
failure is poor statistics. An important difference between
DiM and MMVT is that DiM allocates computational

resources to each Milestone, where MMVT allocates the
computational resources to a cell. If a transition between two
specific interfaces in a cell is needed to describe the reaction
and the transition is significantly less likely than transitions
between other interfaces of the cell, then sampling this
transition using MMVT is inefficient. A simple realization
of this effect is the existence of a barrier in the middle of
the cell. In that case MMVT trajectory is likely to be confined
to a one minimum, to collide with the same interface many
times (hits that do not count for the statistics) and to record
only a few successful transitions to the other minimum. In
contrast, DiM launches a large number of short trajectories.
These trajectories terminate quickly, and contribute to the
statistics.

In DiM, sampling is done (extensively) at the interfaces,
so the probability of observing a transition between interfaces
of interest is greatly enhanced, since at least one end of the
transitional event is sampled extensively. A potential problem
in DiM is a large number of interfaces that may make
sampling expensive. To avoid sampling irrelevant interfaces
(at a given temperature) trajectories are initiated at few initial
interfaces and only interfaces that are hit at least once during
the DiM calculation are sampled and launched. We stop the
DiM calculation when the process converges (i.e., no new
interfaces besides those already sampled are reached).

For the MMVT calculation with 24 images, many cells
cover a relatively large part of the conformational space with

Table 4. Results of the MFPT Calculations on Alanine Dipeptide in Vacuum with 24 Cells Placed as on Figure 9a at
Temperature 400 Ka

method MFPT [ns] total cost [µs]

straightforward MD at T ) 400 K 375 (16) 150
DiM, 500 trajectories/Milestone 630 (299) 0.13 + 0.09 ) 0.22
DiM, 1K trajectories/Milestone 217(103) 0.26 + 0.18 ) 0.46
DiM, 3K trajectories/Milestone 306 (76) 0.78 + 0.47 ) 1.25
DiM, 10K trajectories/Milestone 344 (37) 2.6+ 1.6 ) 4.2
DiM, 20K trajectories/Milestone 387 (34) 5.2 + 3.1 ) 8.3
DiM, 30K trajectories/Milestone 352 (31) 7.8 + 4.7 ) 12.5
MMVT, 10 ns/cell 135 0.24
MMVT, 20 ns/cell 289 0.48
MMVT, 40 ns/cell 322 0.96
MMVT, 60 ns/cell 359 1.5
MMVT, 130 ns/cell 351 3.1
MMVT, 400 ns/cell 336 9.6

a Standard deviations are in the brackets. Estimation of the exact MFPT was performed by launching five groups of 400 trajectories from
C7eqstate and running them until Cax state is reached (the MFPT reported in the table is calculated as the MFPT of all 2000 trajectories; the
error is estimated by standard deviation of MFPTs calculated from each of the five groups). Total cost for DiM is given as a sum of the
simulation time of all trajectories and the simulation time used for preparation of the initial ensemble on each Milestone.

Table 5. Results of the MFPT Calculations on Alanine Dipeptide in Vacuum with Cells Placed as on Figure 9a, b at
Temperature 350 Ka

method MFPT [µs] total cost [µs]

straightforward MD at T ) 350 K 2.05 (0.3) 410
DiM, 5K trajectories/Milestone 2.78 (0.65) 2.3 + 1.4 ) 3.7
DiM, 10K trajectories/Milestone 1.74 (0.40) 4.7 + 2.8 ) 7.5
DiM, 20K trajectories/Milestone 1.75 (0.33) 9.4 + 5.6 ) 15.0
DiM, 60K trajectories/Milestone 1.77 (0.20) 28 + 16.8 ) 44.8
MMVT, 24 cells, 2.00 µs/cell 69.7 48
MMVT, 63 cells, 0.75 µs/cell 3798 47
MMVT, 63 cells, 2.25 µs/cell 855 142

a DiM was performed with 24 cells, MMVT in two different settings: 24 and 63 cells. Standard deviations are in the brackets. Estimation of
the exact MFPT was performed by launching five groups of 200 trajectories from C7eq state and running them until Cax state is reached.
Standard deviation and average of the MFPT calculated from each group are reported in the table. Total cost for DiM is given as a sum of
the simulation time of all trajectories and the simulation time used for preparation of the initial ensemble on each Milestone.
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a rough energy landscape (see for example cell X6 on Figure
9a). This arrangement may cause poor statistics for those
regions since the trajectories spend most of their time in low
free energy regions, rarely visiting interfaces higher in free
energy. To increase the probability of having a double hit at
the two desired surfaces, we run the same calculation with
63 images as well. But even when 63 images are used, the
allocation of computational resources is highly unbalanced.
For example, we consider the frequency of hitting the
interfaces 49 f 47 and 33 f 47 (displayed in white on
Figure 9b) that are both important for the overall MFPT. In
both, 49 and 33 cells, confined simulations of total time of
2.25 µs hit a cell boundary more than 2 × 107times.
However, the interface 33f 47 is hit only 17 times and the
interface 49 f 47 only 7 times. In contrast DiM allocates
an equal number of starting trajectories to each of the
Milestones and transitions from Milestones located near the
transition states are sampled as well as other Milestones. We
have not experimented with any selection criterions for
allocation of computational resources to different cells (in
MMVT) or to different Milestones (in DiM) but both
methods may benefit from selective allocation of resources
to “important regions” of conformational space.

4. Discussions and Conclusions

In this paper, we proposed a method to compute dynamics
in high dimensions called Directional Milestoning. We have
shown that the mean first passage times between Milestones
can be calculated accurately given that the distribution at
which a Milestone is hit does not depend on the previously
assigned Milestone (the assumption formulated in eq 4).
Directional Milestoning arranges dividing hypersufaces in a
special way, aiming to satisfy the above assumption: (i)
Milestones in DiM are made directional, so the local progress
of the reaction (going from the region of Xi to Xj as opposed
to being at the interface between Xi and Xj) is made part of
the description, (ii) the arrangement of Milestones guarantees
a lower bound on spatial separation of any connected pair
of Milestones so trajectories initiated on a Milestone have
space and time to “lose memory” before terminating on a
different Milestone.

The algorithm, while based on the trajectory fragments
of Milestoning, is a step in the direction of Transition
Interface Sampling11-13 (TIS) and the Forward Flux Sam-
pling (FFS) methods22,23 compared to the original Mileston-
ing. Here we use some trajectory tracking. The main
difference between these methods and Directional Mileston-
ing is that TIS and FFS are tracking trajectories all the way
back to the reactant state. This tracking has the advantage
of not relying on any assumption about the initial ensemble
on an interface like is done in Milestoning. On the other
hand, sampling of trajectories in TIS and FFS is computa-
tionally more expensive than in Milestoning because every
attempted trajectory in these methods is tracked back to the
reactant state where in (Directional) Milestoning a trajectory
is tracked only until it reaches a different Milestone.
Computations of trajectory fragments can be done in

Milestoning in a massively parallel way. The PPTIS method
uses a conceptually similar approach of trajectory frag-
ments.24

An important distinction of Directional Milestoning com-
pared to TIS, FFS, and the original Milestoning is that it
allows for arbitrary arrangement of Milestones in confor-
mational space, not necessarily following a linear arrange-
ment along an order parameter or a reaction coordinate. A
similar (arbitrary) arrangement of interfaces is used in the
MMVTmethod,7nonequilibriumumbrellasamplingmethod,25,26

and Trajectory Parallelization and Tilting method.27 The last
two techniques are using short trajectories in cells and
balance the fluxes between cells. Recently the nonequilibrium
umbrella sampling26 was illustrated to be more efficient than
FFS.28 The Weighted Ensemble approach was also shown
recently to work without a reaction coordinate.29

We have compared DiM with MMVT and showed that
the performance of MMVT (in terms of effectiveness and
correctness) is comparable to that of DiM in some of the
examples, but that the correctness and/or effectiveness of
MMVT can be compromised in systems with high free
energy barriers, or in cells with two interfaces that are hard
to reach. Another problem for straightforward implementa-
tion of MMVT is the existence of corners between Mile-
stones along more than one dimension that contribute to
termination times that are too short. So while DiM is in
general somewhat slower than MMVT it provides reliable
results more consistently, including cases in which MMVT
fails.

We also would like to comment on the similarities (and
the differences) of our approach to the Markov State Model
(MSM; for a recent study see ref 30). In the applications of
MSM that we are aware of, long to very long Molecular
Dynamics trajectories at normal conditions are used to
estimate transition times and population of different cells.
MMVT and DiM are designed to avoid such long trajectories
(at the cost of approximate matching of probability densities
at the interfaces). Once a sample of conformational space is
available (which can be done in numerous ways, reaction
path calculations, replica exchange simulations, or high
temperature trajectories) only very short Molecular Dynamics
trajectories are required to estimate the local kinetics. These
short trajectories can be trivially parallelized providing
profound computational saving compared to straightforward
Molecular Dynamics simulations. While significant progress
has been made in parallelizing a single trajectory,31 overhead
still remains and special hardware that is frequently used is
more expensive to buy and to maintain.
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Appendix A: Lemmas Regarding the
Milestones Geometry

Lemma A.1. Let Xi and Xj be two images in conformation
space such that Mifj exists. Let A be an intersection of the
line segment XiXj with Mifj. Then a point B on the hyperplane
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perpendicular to XiXj and passing through A belongs to Mifj

iff ∀k d(Xk,B)gd(Xj,B).
Proof of Lemma A.1. From def 1 of Mifj

By using the Pythagoras theorem for triangles XiAB and XjAB.

As a consequence of Lemma 1, Mifj is a hyperplane segment
perpendicular to XiXj.

Lemma 2. Let Sij be the hyperplane perpendicular to the
line segment XiXj and passing though its midpoint. Then
d(Sij,Mifj) ) (∆i

2)/(2d(Xi,Xj)).
Proof of Lemma 2. Since both Sij and Mifj are perpen-

dicular to XiXj, the distance d(Sij,Mifj) is equal to the distance
of the XiXj midpoint, Pij, and the intersect of Mifj with Xij,
A. Thus

Appendix B: Statistical Reasoning

We describe an estimate of the statistical error of a
milestoning calculation from a single set of collected data
using Bayesian reasoning. As shown in section 22, eq 5,
repeated here as B.1

relates MFPTs 〈τR�〉 and local kinetics entities (〈tR〉 and
P(γ|R)). Milestoning aims to estimate 〈tR〉 and P(γ|R) by
launching NR trajectories from each Milestone R. NRγ of them
terminate on the Milestone γ and the mean incubation time
(time to termination) of all NR trajectories is tjR. In Bayesian
inference, a statistical model of the transitions among
Milestones is needed. We closely follow and extend notation
used in the analysis of Markovian Milestoning with Voronoi
Tesselations; for more details consult.7 The same kinetic
formulas (with different notation) are also available from
ref 9. We assume a continuous Markov jump process
between the Milestones controlled by a transition matrix Q
defined in the following way: let the probability distribution
of the system over all the Milestones be F ) (F1, ..., FN),
where FR is the probability that the system is assigned to a

Milestone R. Under continuous Markov jump process, F
behaves as

For transition matrix Q, by definition qRR ) -∑R*�qR�

and it can be shown by simple algebra that P(�|R) ) q�R/
∑γ*RqγR and 〈tR〉 ) 1/∑γ*RqγR (for derivation see, for
example, refs 1, 2, and 7). By plugging the last three
identities to the linear system (B.1) it reduces to

where 〈τ〉 is the row vector (〈τ1�〉, ..., 〈τ�-1�〉, 〈τ�+1�〉, ...,
〈τN�〉)T and Q′ is a (N - 1) × (N - 1) matrix created from
Q by skipping the row and the column related to the
Milestone �. To infer 〈τ〉 from the collected data, {NRγ,tjR},
using eq B.3, a relation between {NRγ,tjR} and Q′ is needed.
Following the derivations from ref 7, for a system ruled by
B.2, the probability of staying in a state R for time t and
then jumping to a state � in the time interval 〈t,t + dt〉 is
e-∑γ*RqRγtqR�dt. Using this equality, the likelihood of observ-
ing the collected data, L({NRγ,tjR}|Q), is

By using the Bayes’ rule the likelihood that the true transition
matrix is Q given the collected data, L(Q|{NRγ,tjR}), is

where P(Q) is the prior probability distribution of Q without
seeing any data (typically this is set to uniform if we do not
have any prior knowledge about the system). Equation B.5
is typically used in maximum likelihood estimators, for
example, one estimates unknown entity Q with Q*, the
matrix that maximizes likelihood L(Q|{NRγ,tjR}). In this
particular case, Q* has form qRγ* ) NRγ/[NRtjR], which is in
agreement with estimators given in eq 6 in the main text.
Instead of using purely Q* for calculations of MFPTs, we
can examine whole distribution of transition matrices ac-
cording to eq B.5 and understand what is the distribution of
MFPTs consistent with the data collected. Therefore we
typically sample a number of (typically 300) transition
matrices from distribution B.5 and look at the variance of
MFPTs predicted by them. If standard deviation of MFPTs
is large, it suggests that more data about the system shall be
collected. We report standard deviation obtained by this
algorithm in the results of section 3.

Appendix C: Sampling Equilibrium
Distribution on a Milestone Using Umbrella
Sampling

As described in Section 2.4 the equilibrium ensemble from
a Milestone Mifj is used to sample the first hitting point
distribution on the Milestone Mifj. The Milestone Mifj is
defined in eq 1 as Mifj ≡ {X|d(X,Xi)2 ) d(X,Xj)2 + ∆i

2 and
∀k d(X,Xj)ed(X,Xk)}, where {X1, ..., XK} is a set of images

d(Xi, A)2 - d(Xj, A)2 ) ∆i
2

d(Xi, B)2 - d(Xj, B)2 ) (d(Xi, A)2 - d(A, B)2) - (d(Xj, A)2 -

d(A, B)2)

) d(Xi, A)2 - d(Xj, A)2 ) ∆i
2

(d(Xi, Pij) + d(Sij, Mifj))
2 - (d(Xj, Pij) - d(Sij, Mifj))

2 ) ∆i
2

d(Sij, Mifj) )
∆i

2

4d(Xi, Pij)
)

∆i
2

2d(Xi, Xj)

〈τR�〉 ) 〈tR〉 + ∑
γ

P(γ|R)〈τγ�〉 (B.1)

Ġ ) GQ (B.2)

Q'〈τ〉 ) -1 (B.3)

L({NRγ, tjR}|Q) ) ∏
R

∏
γ*R

qRγ
NRγe-qRγNR tjR (B.4)

L(Q|{NRγ, tjR}) ∝ ∏
R

∏
γ*R

qRγ
NRγe-qRγNR tjRP(Q) (B.5)
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in the conformational space. In practice, we work with the
following approximation of Mifj:

Clearly as λf0, Mifj′ converges to Mifj. We have used λ )
0.5° or λ ) 0.01 Å for the calculations on alanine dipeptide.

To sample conformations in Mifj′ from equilibrium dis-
tribution the following Umbrella Sampling protocol is
employed. We run NVT trajectory of the system (using
Andersen thermostat) with a modified potential function U
and examine a conformation every few steps (every 100-400
fs for examples described in this paper). If an examined
conformation belongs to Mifj′ it is saved; otherwise it is
discarded. If conformation is saved, corresponding velocities
are sampled from Boltzmann distribution. The potential
function U is modified to bias the system toward the region
Mifj′ in the following way:

By definition for X ∈ Mifj′ , U′(X) ) U(X) and therefore saved
points from Mifj′ are sampled with the true equilibrium
probabilities. If on the other hand NVT trajectory of the
system is outside of the region Mifj′ , the terms Uij

1 and Uij
2

force the system to return back to Mifj′ , the strength of this
bias is controlled by force constants K1 and K2(both are set
to 103 kcal mol-1 rad-2 or 104 kcal mol-1 Å-2 for alanine
dipeptide system).
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dij(X) ≡ d(X, Xj)
2 - d(X, Xi)

2 + ∆i
2

Mifj′ ≡ {X|∀k, d(X, Xk) g d(X, Xj) ∧ -λ e dij(X) e 0}
(C.1)

U′(X))U(X) + Uij
1(X) + Uij

2(X)

Uij
1(X)){K1dij(X)2 if dij(X) > 0

K1(dij(X) - λ)2 if dij(X) < -λ
0 otherwise

Uij
1(X)){K2(d(X, Xk) - d(X, Xj))

2 if d(X, Xk) < d(X, Xj)

0 otherwise
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Abstract: Starting from the Hückel Hamiltonian of conjugated hydrocarbon chains (ethylene,
allyl radical, butadiene, pentadienyl radical, hexatriene, etc.), we perform a simple unitary
transformation and obtain a Dirac matrix Hamiltonian. Thus already small molecules are described
exactly in terms of a discrete Dirac equation, the continuum limit of which yields a one-dimensional
Dirac Hamiltonian. Augmenting this Hamiltonian with specially adapted boundary conditions,
we find that all the orbitals of the unsaturated hydrocarbon chains are reproduced by the
continuous Dirac equation. However, only orbital energies close to the highest occupied molecular
orbital/lowest unoccupied molecular orbital energy are accurately predicted by the Dirac equation.
Since it is known that a continuous Dirac equation describes the electronic structure of graphene
around the Fermi energy, our findings answer the question to what extent this peculiar electronic
structure is already developed in small molecules containing a delocalized π-electron system.
We illustrate how the electronic structure of small polyenes carries over to a certain class of
rectangular graphene sheets and eventually to graphene itself. Thus the peculiar electronic
structure of graphene extends to a large degree to the smallest unsaturated molecule (ethylene).

Introduction

Presently, graphene is at the center of numerous investiga-
tions (for recent reviews see, e.g., refs 1–5). The remarkable
features of graphene, such as its conductance properties,3

can be attributed to its peculiar electronic structure. In the
simplest Hückel description,6 accounting for nearest-neighbor
coupling, the dispersion relation close to the Fermi energy
is linear, and this energy region can be described7,8 by a
two-dimensional (2D) Dirac equation of massless fermions.
Recently, one-dimensional (1D) graphene-based systems
have become accessible to experiments2,9 as well as zero-
dimensional (“molecular”) ones.2,10,11

The question that we strive to answer in the present work
is whether the electronic structure of graphene has precursors
in the molecular domain. Here we refer to the unsaturated
hydrocarbon chains defined in Figure 1 as polyenes. Within
the Hückel model (nearest-neighbor coupling), we show that
these polyenes are described by a 1D, discrete Dirac equation

of massless (m ) 0) particles. The continuum limit of this
discrete equation yields a 1D Dirac equation that reproduces
the Hückel orbitals exactly (up to a gauge transformation
and a normalization factor). The orbital energies of orbitals
close to the highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) are well
represented as well by the continuous equation. The continu-
ous, 1D Dirac equation (m ) 0) contains a Pauli spin matrix:

which multiplies the derivative operator d ) d/dx, i.e.:
* Corresponding author. E-mail: Matthias.Ernzerhof@

UMontreal.ca.

Figure 1. Schematic representation of the unsaturated hydro-
carbons investigated. Even- (left) as well as odd-numbered
chains are considered. The artificial subdivision into sublattices
of a- and b-type carbon atoms is indicated as well.

σ ) (0 -i
i 0 ) (1)
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φ is a two-component pseudospinor:

and VF the Fermi velocity. As we will show below, this
equation, which is often referred to as Weyl equation,12 is
the continuous limit of the transformed Hückel Hamiltonian
of linear polyenes. The fact that these molecules are described
by a Dirac equation offers a new perspective for their
electronic structure. A recent article13 dealing with infinite,
linear carbon chains arrives at an equivalent Dirac equation
for the description of the system close to the Fermi energy.

A question that arises in this context is whether the
electronic structure of the polyenes can be somehow related
to the electronic structure of graphene or finite parts thereof.
We provide a positive answer to this question by examining
rectangular pieces of graphene. For a particular class of
graphene rectangles, the electronic structure near the Fermi
energy is essentially 1D and identical to the electronic
structure of polyenes.

Polyene Described in Terms of a 1D Dirac Equation.
Now we show how the Dirac equation, described in the
introduction, emerges as the continuum limit of the Hückel
matrix for polyene. To this end, we start from a matrix of
unspecified dimension. We regroup the atoms into two
bipartite sublattices (cf. Figure 1) such that every other atom
belongs to the sublattice of a atoms, and the remaining ones
form the b sublattice. To emphasize this division, we use
the variable a for the diagonal matrix element of the atoms
belonging to the a sublattice. Similarly, b denotes the
diagonal element of the atom in the b sublattice, even though
the numerical value of both these parameters is zero:

where t is the hopping parameter. An appropriate permutation
of the basis functions separates the atoms of the a and b
lattice. The resulting H̃ reads

H̃ can be converted into the discrete version of the Dirac
Hamiltonian in eq 2 through application of a gauge trans-
formation G. This transformation consists of multiplying the
coefficient of every second atom of the a lattice as well as
b lattice with -1. If we denote the initial coefficient vector
by C, then the new, transformed coefficient vector will be
given by

Q represents the envelope function of C. For orbitals
with energies close to the HOMO and LUMO, the short-
range variations in C are eliminated by G, and only the
long-range variations are retained in Q. This point is
illustrated in the orbital plots provided below. A corre-
sponding modification of the Hamiltonian matrix, com-
pensating for the transformation of the wave function,
yields the matrix operator D:

Keeping in mind that VF ) -2t, D can be identified as the
discretized version of -iVFσd/dx appearing in eq 2. The
solutions of the continuous Dirac equation (eq 2) are now
discussed in some detail and compared to the eigenfunctions
obtained with the Hückel approach, or equivalently, to the
eigenfunctions of D.

Solutions for Particular Systems: Introducing Bound-
ary Conditions. The eigenfunctions of the continuous Dirac
equation (eq 2) and their respective eigenvalues are of the
form:

The wave vector k in this equation is a real variable.
Similar to the 2D case, the eigenfunctions exhibit helicity.4

This means that solutions describing forward-moving
particles have a defined pseudospin orientation s+ ) (+i

1 ),
whereas backward-traveling particles have the opposite
pseudo spin s- ) (-i

1 ). To arrive at this result, one can
calculate the probability current density j to obtain, j )
VF(φ*σφ - φσφ*), and note that σs+ ) s+ and σs- )
-s-. The equation for j also shows that even if the wave
vector in eq 8 is proportional to the energy, the particle
velocity is constant and equal to VF. In relativistic quantum
mechanics this behavior corresponds to massless particles
that move with the speed of light. Here we are particularly
interested in finding the wave functions of finite systems,
and the periodic solutions of eq 2 are not a suitable starting
point. Real solutions φs and φc that are linear combinations
of the complex ones (φ+ and φ-) are appropriate

-iVFσdφ ) εφ (2)

φ ) (φu

φd
) (3)

H ) (··· a t
t b t

t a t
t b t

t a t
t b

···

) (4)

H̃ ) (··· ···
a t t

a t t
a t ···

···
··· t b

t t b
t t b

···
···

) (5)

Q ) GC (6)

D ) GHG-1 ) (··· ···
a -t t

a -t t

a -t ···
···

··· -t b

t -t b
t -t b

···
···

) (7)

φ
( ) 1

√2
eikx( 1

(i ), ε ) (VFk (8)
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These states are not pure pseudospin states anymore. In
the continuum limit, the equivalent of a polyene would be a
finite box terminated to the right and left by infinite potential
barriers. Apparently, the appropriate boundary conditions are
that the wave function vanishes at the borders (at x ) 0 and
x ) l) of the box, i.e., φ(x ) 0) ) φ(x ) l) ) 0. Naively,
one would apply this condition to the two components of
the pseudospinor. Here, however, we arrive at the continuous
model as a limit of discrete systems, and the boundary
conditions are also defined through a limiting procedure.
Thus, each of the two components represents the wave
function on a set of points the two of which are comple-
mentary. Therefore, we have to distinguish between two
cases: (i) the one where each of the sets contains one end
point, implying that the number of atoms (N) in the chain is
even, and (ii) the case where one set includes both points 0
and l, which would correspond to an odd number of atoms
in the chain. Starting with (i), we suppose that the domain
of the up component φu in the wave function φ ) (φu,φd)
starts at the left boundary of the box and terminates before
the right boundary is reached. Similarly, the domain of points
for the down component (φd) does not contain the boundary
point on the left but the one on the right. This choice excludes
eq 10, and only eq 9 yields solutions that vanish at the
boundary if

To illustrate these solutions, we choose n ) -1 and 0
and plot the two components of the wave function (Figure

2). For comparison, we also plot the HOMO and LUMO of
a N ) 30 polyene chain. Clearly, the solutions of the
continuous Dirac equation yield an accurate model for the
envelope function of the HOMO (corresponding to n ) -1)
and the LUMO orbital (corresponding to n ) 0). To better
establish the connection between the solutions of the discrete
equation and the ones of the continuous equation, we note
that an N-atom chain represents a box that has been
discretized with N + 2 points. Two of these points, one on
both the left- and the right-hand side, lie on the boundary of
the box where the wave function vanishes. Correspondingly,
the N remaining points (associated with the N atoms) are all
inside of the box and have nonvanishing coefficients in
general.

Next we consider the case (ii) where the domain of φu

contains both end points. This would correspond to a carbon
chain with an odd number of atoms. Since the boundary
condition is only relevant for one of the two discrete sets of
points, i.e., the one φu is defined on, only this component
has to satisfy the boundary conditions and thus defines the
admissible values of k:

In this case (see Figure 3), the continuous model also
reproduces the envelope of the displayed Hückel orbitals.

Another 1D system of interest is a ring where the wave
function satisfies periodic boundary conditions. The solutions
of the continuous Dirac equation can only be compared to
the orbitals of a circular molecule, whose number of atoms
is a multiple of 4. This condition arises because the
transformation G (eq 6) imposes that, on each sublattice,
every second coefficient is multiplied by -1. For this
transformation to be unique on a ring, it has to contain a
number of atoms that is a multiple of 4. Both solutions of

Figure 2. Massless Dirac particle in a box. The k ) -((π/2)/l), (where n ) -1) and k ) ((π/2)/l) (with n ) 0) wave functions are
displayed on the left (φu is represented by the green and φd by the black curve) and compared to the HOMO (lower orbital) and
LUMO (upper orbital) of a polyene chain with 30 atoms (i.e., N ) even). The continuous solutions are accurate representations
of the orbital envelope functions.

φ
s ) ( sin(kx)

cos(kx) ) (9)

φ
c ) ( cos(kx)

-sin(kx) ) (10)

k ) (n + (1/2))π
l

, n ) ...,-2,-1, 0, 1, 2, ...

(11)

k ) nπ
l

, n ) ...,-2,-1, 0, 1, 2, ... (12)

1820 J. Chem. Theory Comput., Vol. 6, No. 6, 2010 Ernzerhof and Goyer



the continuous Dirac equation, φs and φc, satisfy the periodic
boundary conditions if

As in the nonperiodic case, the solutions of the Dirac
equation correspond to the envelope functions of the Hückel
orbitals. Alternatively, the complex solutions φ- and φ+ can
also be employed together with eq 13 to describe the system.
In this case the solutions are helical, a property shared with
the massless fermions found in infinite graphene. Cyclic
molecules with 4n electrons are anti-aromatic, thus for finite
systems, helicity and anti-aromaticity appear to coincide.

Small Polyenes. Now we turn to the question of how long
a polyene has to be to be well represented by the continuum
model. To address this issue, we compare the dispersion
relation of the continuous Dirac equation to the Hückel
energy distribution of polyenes. The latter distribution is
known analytically:

We introduce a wave vector k in eq 14 in the canonical
way. Changes in the wave vector are (π∆n)/(N + 1), as the
index of the states changes by ∆n. Furthermore, the origin
of the wave vector is shifted by - π/2 to account for the

gauge transformation. The resulting dispersion relation:

is compared (Figure 4) to the corresponding relation of the
continuous Dirac equation. For small values of |k|, the

Figure 3. Massless Dirac particle in a box. The left part illustrates the solutions of the continuous Dirac equation with k ) -π/l,
0, and π/l (corresponding to n ) -1, 0, 1), from the bottom up, respectively; φu is represented by the green and φd by the black
curve. For comparison, the corresponding orbitals of polyene with 31 atoms are also shown. The singly occupied orbital is in the
middle, while its energetic neighbors are shown below and above. Again, the envelope function of the orbitals is reproduced by
the continuous solutions.

k ) n
2π
l

, n ) ...,-2,-1, 0, 1, 2, ... (13)

En ) 2t cos( πn
N + 1), n ) 1, 2, ..., N (14)

E(k) ) -2t sin(k), k ∈ [-π
2

,
π
2 ] (15)

Figure 4. Energy dispersion relation of finite polyenes (green
curves) compared to the dispersion relation of the continuous Dirac
equation (black lines). Note that the argument k in eq 15 has been
replaced by -k to obtain the second green graph. This has been
done to mimic the degeneracy that is present in the infinite or
periodic system but absent in the nonperiodic, finite one.
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dispersion relations are almost identical, and they differ in
the large-|k| regime, where the Hückel spectrum exhibits the
known quadratic behavior.

A related question is how similar the Hückel orbitals are
to the solutions of the Dirac equation? This question has a
strikingly simple answer. For all values of N they are, up to
the gauge transformation G and a normalization factor,
identical. More precisely, if we take a solution of the
continuous Dirac equation (subject to the proper boundary
conditions) and represent it on an equidistant grid of N + 2
points, then the resulting orbital is related to an orbital of a
polyene with N atoms by a gauge transformation. This can
be readily verified by acting with D on Q, where Q is a grid
representation of φs defined in eq 9. Then components, such
as t sin(k(n + 2)) - t sin(kn) and t cos(k(n + 2)) - t cos(kn),
of the resulting vector are examined. By exploiting trigo-
nometric identities, these expressions can be converted to

and

showing that the discrete Dirac equation is satisfied. This
finding is analogous to the known14 fact that a discretization
of the free-electron model yields the exact Hückel orbitals.

In Figure 5, we provide the Hückel HOMOs of a number
of polyenes with N ) 3, ..., 8. As can be guessed and verified
analytically, they are identical to the solutions of the
continuous Dirac equation modulo a gauge transforma-
tion.

Relation to Finite Graphene Ribbons. The electronic
structure of the polyenes discussed above carries over to a
surprising degree to finite graphene ribbons15–17 of a certain
width. In detail, we consider a symmetric, rectangular piece
of graphene with two armchair edges (along the longitudinal
direction) and two zigzag edges. The length of the ribbons
is assumed to be large compared to their width. Recently,
the edge states that appear in finite graphene ribbons and
other finite shapes have been investigated extensively, among
these studies are refs 18–27. These edge states are typically
found along zigzag borders. Electronic structure calculations
taking electron interaction into account show that the edge
states can result in spin polarization since they are prefer-
entially occupied with electrons of a particular spin
orientation.18,26 By keeping the width of the ribbon small

compared to its length, we reduce the number of edge states
and the associated complexity.

The narrowest ribbon, conforming to the above listed
restrictions, is shown in Figure 6. It exhibits no edge states,
and we recover the electronic structure already discussed for
polyene. In the examples considered, the transverse degree
of freedom is effectively frozen since excitations in transverse
direction require too much energy. Furthermore, there is no
binding or antibinding in the transverse direction since the
states of interest have an energy close to 0. As one might
suspect, the pattern observed in Figure 6 repeats itself in
ribbons, whose width is given by 3n + 2 benzene rings. An
example is shown in Figure 7, where n ) 1. This ribbon
exhibits four edge states with energies at or close to 0. These
states are localized at the zigzag edged, and here we neglect
their impact on the electronic structure, which is reasonable
if the length of the ribbon is small compared to its width.
Infinite armchair graphene ribbons with a width of 3n + 2
benzene rings are known to be metallic in the Hückel model
(see, e.g. refs 17, 28–31 and references therein). In view of
our discussion this is not surprising since, in the limit of an
infinite ribbon length, the 1D Dirac equation, describing the
dispersion relation around the Fermi energy, yields a
vanishing band gap. It should be mentioned, however, that
more sophisticated density functional theory calculations32,33

yield small band gaps for armchair ribbons.
Armchair ribbons other than the ones discussed here

exhibit, in general, a coupling between the longitudinal
polyene chains, which results in a band gap even at the

Figure 5. HOMOs of N-atom polyenes (N ) 3, ..., 8). The
odd-numbered chains all show identically structured HOMOs
having a vanishing contribution on one sublattice. Similarly,
the even-numbered chains have HOMOs, whose envelope
describes a quarter wave on each of the sublattices.

tsin(kn) - tsin(k(n + 2)) ) -2tcos(k(n + 1))sin(k)
) E(k)cos(k(n + 1))

(16)

tcos(k(n + 2)) - tcos(kn) ) -2tsin(k(n + 1))sin(k)
) E(k)sin(k(n + 1))

(17)

Figure 6. Shown are the HOMO and the HOMO-1 of a
graphene rectangle which is two benzene rings wide. Both
orbitals exhibit a nodal plane in longitudinal direction which
effectively separates the system into two polyene chains.
These polyene chains in turn exhibit envelope functions
corresponding to solutions of the continuous Dirac equation.

Figure 7. Orbitals of a graphene rectangle which is five
benzene rings wide. Omitting states localized at the zigzag
boundaries (i.e., edge states discussed in the text), the HOMO
and the HOMO-1 are displayed in the figure. Effective polyene
chains are clearly visible in both orbitals.
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Hückel level. Furthermore, we recall that, except for the
narrowest armchair ribbons, edge states play a role and alter
the dispersion relation close to the Fermi energy. Increasing
the length of the ribbon renders these surface effects less
and less important. Detailed computational studies of the
transition of the electronic structure from finite ribbons to
graphene are provided in refs 18 and 22.

Summary and Conclusion

Maybe the most important result obtained here is that the
Hückel Hamiltonian can be rigorously transformed into a
discrete Dirac Hamiltonian. Even the continuous limit of the
discrete Hamiltonian, yielding the 1D Dirac equation, results
in the exact polyene orbitals. The boundary conditions,
accompanying the continuous Dirac operator, play a crucial
role. They are somewhat involved since they are defined by
taking the limit of the conditions applied to discrete systems.
Straight forward application of particle-in-a-box boundary
conditions does not yield a solution for the Dirac equation
of massless particles.

For graphene, the electronic structure close to the Fermi
energy is accurately described by the Dirac equation. This
result is arrived at (see, e.g., ref 4) by linearizing a wave
vector dependent Schrödinger equation that is subjected to
periodic boundary conditions. Adding to these findings, here
we consider finite polyene chains and show that a surprisingly
simple transformation turns the Hückel matrix of a finite
polyene into a discrete Dirac Hamiltonian.

Neglecting edge states (see the discussion in the
previous section), we find that graphene rectangles that
have a width (given in units of benzene rings) of 3n + 2
exhibit no coupling between longitudinal and transverse
degrees of freedom in orbitals with energies close to 0.
These systems can be described as effective polyene chains
by the 1D Dirac equation. For armchair graphene ribbons
of infinite length, it is known that, at the Hückel level, 3n
+ 2 ribbons have a vanishing band gap.17 This appears
to be a simple consequence of the structure of the wave
function revealed here. Increasing the length and width
of the 3n + 2 ribbon, we eventually arrive at graphene
where what we refer to as the longitudinal direction is
now one of three equivalent orientations, since graphene
has a six-fold rotational symmetry.

Graphene is regarded as a model system3 for quantum
electrodynamics (for an introduction see, e.g., ref 12).
Here, we demonstrate that even small molecules can serve
to illustrate features of the Dirac equation subject to finite-
system boundary conditions. There appears to be a
considerable similarity between finite conjugated systems,
such as the ones discussed here, and graphene. It is
puzzling that involved ideas of quantum electrodynamics
can be illustrated in terms of the Hückel model of
polyenes. However, we should add that, in finite systems,
there are boundary effects, such as edge states, discussed
in the previous section, that have no analogue in graphene.
Furthermore, graphene is a two-dimensional (2D) system,
and therefore, there are topological effects that have no
counterpart in one-dimensional (1D) systems. An example

is the Berry phase that the wave function of graphene can
acquire if the wave vector varies along closed loops.4

The free-electron model is often employed to qualitatively
explain the behavior of π-electrons in polyene. For example,
this model has been used recently34 to investigate the electron
transport properties of conjugated systems. Since the free-
electron model is based on a differential equation and not
on a matrix equation, its solutions can be obtained analyti-
cally. However, its quadratic dispersion relation does not
correctly reproduce the energy level spacing of polyenes
around the highest occupied molecular orbital/lowest unoc-
cupied molecular orbital (HOMO/LUMO) energies. The
discrete Dirac equation presented here results in an alternative
continuum model given by the 1D Dirac equation. This
equation yields a linear dispersion relation and rectifies a
problem of the free-electron model. Furthermore, the Dirac
energy spectrum is symmetric with respect to the midpoint
between the HOMO and the LUMO. This is a feature of the
Hückel spectrum as well that is not reproduced by the
conventional free-electron model.
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Abstract: Dative bonds to substituted boranes represent a challenge for the approximate
exchange-correlation functionals typically used in density functional theory (DFT). Accurately
modeling these bonds with DFT has usually required highly parametrized functionals, large
admixtures of exact exchange, or computationally expensive double hybrids. This work shows
that the nonempirical semilocal PBEsol functional, and the nonempirical semilocal PBE and
TPSS functionals augmented with empirical interatomic dispersion corrections, accurately treat
several representative problems in dative bonding. These methods typically surpass the MPW1K
“kinetics” global hybrid previously recommended for dative bonds. This work also provides
additional insights into the accuracy of the parametrized M06 functionals and indicates some
deficiencies of the B97-D functional relative to PBE-D and TPSS-D. Applications to frustrated
Lewis pairs illustrate the potential of these methods.

1. Introduction

Density functional theory (DFT) incorporating approximate
exchange-correlation functionals has become a favored
approach for modeling chemical bonding in condensed
phases and medium-sized to large molecules.1 But recent
investigations2-4 have demonstrated that conventional func-
tionals have severe problems treating noncovalent interac-
tions. This has stimulated several methodological develop-
ments in DFT. These include empirical5,6 and nonempirical7,8

interatomic dispersion corrections, effective atomic core
potentials to model dispersion,9 “fifth-rung” functionals10

incorporating approximate second-order Görling-Levy per-
turbation theory correlation,11 and semiempirical functionals
containing a large number of fitted parameters.12

Dative bonds (coordinate covalent bonds) to substituted
boranes form an important class of relatively weak interac-
tions. Dative bonds are strongly influenced by factors such
as crystal packing13-15 and the interplay of substituents’
steric and electronic effects.16 Boron’s dative bonds play
important roles in areas including sensing17,18 and supramo-
lecular chemistry.19 Recent reports of heterolytic H2 splitting

by “frustrated Lewis pairs” between sterically hindered
boranes and Lewis bases20,21 has engendered much compu-
tational work on these systems.22-27 More broadly, dative
bonding is central to transition metal chemistry, another focus
of recent computational work.28-32

Dative bonds to substituted boranes are a significant
challenge for DFT. Standard DFT approximations, including
the B3LYP33,34 functional used in previous investigations
of borane dative bonding,18,35 often display qualitative and
quantitative failures for these systems. Gilbert showed that
B3LYP cannot reproduce accurate B-N bond lengths and
bond dissociation energies for several MenH3-nB-NMem-
H3-m and (CF3)nH3-nB-NMemH3-m species (ref 36, “Me”
) CH3). Particularly egregious failures occurred in the sort
of highly substituted, sterically congested molecules relevant
to frustrated Lewis pairing. The best DFT results were
obtained with the kinetics global hybrid MPW1K,37 which
is parametrized to reproduce reaction barrier heights. This
led the author to conclude that methods designed for
“incompletely bound” transition states are most appropriate
for modeling dative bonds. Phillips and Cramer found that
hybrid DFT functionals were required to model the bond
length in F3B-NCH and that even hybrids could not
reproduce accurate B-N bond energies.38 Plumley and
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Evanseck found B3LYP to be completely inadequate for
modeling substituent effects in Me3B-NMenH3-n com-
plexes.39 In these systems, competition between steric and
electronic effects makes the B-N bond enthalpy increase
for n ) 0 f 2 and then decrease at n ) 3.40 Of the
functionals tested by the authors, only the highly param-
etrized Minnesota functionals12 reproduced this experimental
trend. The authors recommended the M06-2X functional,
which they used extensively in a subsequent study of boron’s
Lewis acidity.16 Rakow and co-workers found that empiri-
cally dispersion-corrected functionals, or Minnesota func-
tionals, were needed to treat H/Br exchange barriers in
BBr3.41

This state of affairs is somewhat unsatisfying. Global
hybrid density functionals like MPW1K and M06-2X have
a relatively large computational cost due to their inclusion
of exact (Hartree-Fock-type, HF) exchange.1 Indeed, a
recent MPW1K treatment of the frustrated Lewis pair and
H2 activating complex20 (C6F5)3B-P(tBu)3 [“tBu” )
C(CH3)3] used the ONIOM embedding method42 due to
computational cost.23 The long-range part of hybrids’ HF
exchange is especially problematic in condensed phases,43

making global hybrids inappropriate for dative bonding in
nanostructures and condensed phases. Fifth-rung functionals
like the B2PLYP-D44 method recommended in ref 41 have
an even higher computational expense. Additionally, while
the M06 suite of functionals has demonstrated broad utility
in chemistry,12 its members have a large number of empirical
parameters and appear prone to numerical errors.45,46

There would be great value in a semilocal density
functional that could accurately treat dative bonds in
molecules, nanostructures, and condensed phases, with a low
computational cost and a minimum of empiricism. (“Semilo-
cal” density functionals model the exchange-correlation
energy density and potential at each point r as a function of
the electron density, density gradient, and possibly the
noninteracting kinetic energy density and/or density Lapla-
cian at r.1 They are typically computationally cheaper than
global hybrids.) Here, I explore two recent approximations
with these characteristics: the nonempirical PBEsol general-
ized gradient approximation (GGA)47 and the addition of
empirical dispersion corrections5 to nonempirical semilocal
functionals.

Surprising recent investigations have found that simple,
nonempirical density functionals can accurately model the
“medium-range correlation” important to noncovalent inter-
actions. Woodrich and co-workers showed that the local spin-
density approximation (LSDA) outperformed conventional
functionals for isodesmic stabilization energies of n-alkanes.3

Csonka and co-workers showed that PBEsol,47 while de-
signed for solids, accurately models a range of noncovalent
stereoelectronic effects.48 B3LYP gives qualitative and
quantitative failures for these properties.2 PBEsol has the
form of the Perdew-Burke-Ernzerhof (PBE) GGA49 and
modifies two parameters to restore the correct density
gradient expansion for exchange.47

Another important development is the advent of empirical
interatomic dispersion corrections50 in DFT.5,6,51 Grimme’s
“-D” corrections add a damped, molecular-mechanics-type

R-6 internuclear attraction to a DFT calculation. These
provide a straightforward route to improving noncovalent
interactions in large systems.51 They have been successfully
applied to a few problems in dative bonding.22,26,41,52,53

However, much of that work focused on dispersion-corrected
double hybrids whose computational expense is comparable
to MP2. To date, a systematic study of “-D” corrections for
dative bonding has not appeared.

This work benchmarks the methods of refs 3, 48, and 51
for dative bonds to substituted boranes. I test the nonem-
pirical LSDA and PBEsol functionals, and the addition of
empirical dispersion corrections to the nonempirical PBE and
TPSS functionals. These methods significantly improve upon
conventional global hybrids, approaching the accuracy of
M06-2X at reduced computational cost. Selected results for
the entire M06 suite of functionals provide new insight into
these methods’ success. Conversely, tests of the dispersion-
corrected B97-D functional indicate that its accurate perfor-
mance in other areas51 does not carry over to dative bonds.

2. Computational Details

All calculations use a development version of the Gaussian
suite of programs.54 Unless noted otherwise, calculations use
the correlation-consistent aug-cc-pVTZ basis set55 or the
large Pople basis 6-311++G(3df,2p).56 Binding energies and
enthalpies include counterpoise corrections for basis set
superposition error.57 Self-consistent field (SCF) calculations
converge the energy to at least 10-8 Hartree with corre-
sponding thresholds for geometry calculations (Gaussian
keywords “SCF)Tight” and “Geom)Tight”). DFT numer-
ical integrations use at least an “UltraFine” integration grid
with 99 radial and 590 angular points per atom. Unless noted
otherwise, energies are evaluated with geometries optimized
using the corresponding method. Counterpoise corrections
are not included during the geometry optimizations. All
calculations treat isolated molecules, with no corrections for
solvation or crystal packing effects. Open-shell systems are
treated spin-unrestricted. Other computational details are
taken from the literature (vide infra).

This work focuses on nonempirical and dispersion-
corrected semilocal exchange-correlation functionals. These
include the local spin-density approximation LSDA (Vosko-
Wilk-Nusair correlation functional V, ref 58), the Perdew-
Burke-Ernzerhof (PBE) GGA,49 the Tao-Perdew-
Staroverov-Scuseria (TPSS) meta-GGA,59 and the PBEsol
GGA.47 PBE-D and TPSS-D use Grimme’s empirical
interatomic dispersion correction.5,6,51 Scale factors s6 ) 0.75
(PBE-D) and s6 ) 1.00 (TPSS-D) are taken from ref 6. The
empirical B97-D functional is also tested.6 Selected systems
are tested for the entire M06 suite of functionals: the
semilocal M06-L meta-GGA,60 the M06 hybrid meta-GGA
incorporating 27% HF exchange,12 the M06-2X hybrid with
54% HF exchange,12 and the “density functional for spec-
troscopy” M06-HF with 100% HF exchange.61 While M06-
2X is recommended for problems like dative bonding,12

results from the entire suite can provide interesting insights
into these functionals. The B3PW91,33 B3LYP,34 and
MPW1K37 global hybrid functionals are included for com-
parisons to previous work.
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3. Results

Figure 1 presents a cumulative picture of the results. The
figure shows mean absolute errors (MAE) in bond energies/
enthalpies and bond lengths for several sets of B-N dative
bonds. To summarize, the dispersion-corrected PBE-D and
TPSS-D functionals give very accurate B-N dissociation
energies and bond lengths. These methods surpass the
previously recommended MPW1K functional and approach
the accurate M06-2X functional. PBEsol is also accurate for
B-N dissociation energies, though it tends to underestimate
bond lengths. The remainder of this section details the
individual studies in Figure 1 and discusses applications to
larger systems.

3.1. Bond Strengths of Substituted Amine Boranes.
References 39 and 40 studied the B-N bond enthalpies of
four Me3B-NMenH3-n derivatives. These references tested
the B3LYP, MPW1K, MPWB1K, MPW1B95, and M05/
M06 density functionals. The experimental trend, in which
the B-N dative bond strengthens for n from 0-2 and

decreases at n ) 3, was only reproduced by the M05-2X,
M06, and M06-2X functionals.

Table 1 shows new calculations on these Me3B-
NMenH3-n derivatives. The calculations in Table 1 follow
refs 39 and 40, evaluating binding enthalpies at 373 K using
B3LYP/6-31G(d) thermal corrections rescaled by 0.9941.
Counterpoise-corrected thermal corrections were taken from
ref 39. The B3LYP, MPW1K, and M06-2X results in Table
1 reproduce ref 40 to within (0.1 kcal/mol. The basis set is
relatively saturated: all methods except for the Minnesota
functionals give counterpoise corrections < 1 mH.

The most striking results in Table 1 involve the relative
binding enthalpies. While LSDA overbinds, it correctly
predicts that the bond enthalpies strengthen for n from 0 to
2 and decrease at n ) 3. None of the DFT methods tested in
ref 39 reproduced this trend. PBEsol nearly reproduces the
trend and also gives absolute bond enthalpies that signifi-
cantly improve on LSDA. This is consistent with previous
observations of medium-range correlation in LSDA3 and

Figure 1. Cumulative statistical errors in B-N bond strengths (left) and bond lengths (right). The left panel plots the MAE in
B-N bond energies/enthalpies from Tables 1, 2, and 5. The right panel plots the MAE in B-N bond lengths from Table 4.

Table 1. B-N Bond Enthalpies at 373 K (kcal/mol) for Methyl Substituted Amine Boranesa

method Me3B-NH3 Me3B-NH2Me Me3B-NHMe2 Me3B-NMe3 MAE

exptl -13.8 ( 0.3 -17.6 ( 0.2 -19.3 ( 0.3 -17.6 ( 0.2
LSDA -22.6 -27.1 -27.6 -25.2 8.6
PBEsol -16.6 -19.7 -19.1 -15.7 1.8
PBE -11.4 -13.9 -12.4 -8.1 5.6
TPSS -11.0 -13.0 -11.6 -7.7 6.3

PBE-D -15.2 -19.7 -20.7 -18.8 1.5
TPSS-D -16.0 -20.9 -22.7 -22.2 3.4
B97-D -9.8 -14.4 -15.6 -14.3 3.6

B3LYP -6.8 -8.8 -7.0 -2.4 10.8
B3PW91 -9.1 -11.0 -9.2 -4.8 8.6
MPW1K -11.9 -14.2 -12.9 -9.1 5.1

M06-L -9.7 -13.1 -13.3 -11.5 5.2
M06 -10.3 -14.0 -14.6 -12.5 4.2
M06-2X -14.1 -18.3 -19.2 -17.8 0.3
M06-HF -20.0 -24.9 -26.7 -26.2 7.4

a Counterpoise-corrected 6-311++G(3df,2p) calculations, experimental results from ref 39.
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PBEsol.48 These results are not a basis set artifact: PBEsol
calculations in the aug-cc-pVTZ basis set return bond
enthalpies within (0.1 kcal/mol of those in Table 1. PBEsol
significantly improves upon the MPW1K functional recom-
mended in ref 36 and approaches the accuracy of M06-2X.

Another important result in Table 1 is the success of
empirical dispersion corrections. PBE and TPSS do not
reproduce the absolute bond enthalpies of Me3B-NMenH3-n

or the trend with increasing n. But adding empirical “-D”
dispersion corrections to these nonempirical functionals
dramatically improves their performance. PBE-D and TPSS-D
both reproduce the experimental trend, and PBE-D gives
overall accuracy comparable to PBEsol and approaching
M06-2X. This result agrees with ref 62, which showed that
PBE-D reproduces MP2 benchmarks for H3B-PH3 and
Me3B-PMe3.

The B97-D GGA, whose empirical functional form was
explicitly parametrized to complement its dispersion correc-
tion,6 underestimates B-N bond strengths. This is unlikely
to be a basis set artifact: geometry-optimized B97-D/aug-
cc-pVTZ calculations give counterpoise-corrected dissocia-
tion enthalpies within (0.1 kcal/mol of those in Table 1.
B97-D also significantly overestimates B-N dative bond
lengths (vide infra). Note in this context that ref 22 showed
B97-D significantly underestimates the B-P dative bond
strength in a cyclic intramolecular phosphane-borane ad-
duct.63

Table 1 also shows that the entire M06 series of functionals
reproduces the experimental trend in binding enthalpies.
While the absolute binding enthalpies vary with the fraction
of HF exchange, all four functionals appear to give a
reasonable account of the medium-range correlation that
produces this trend. This indicates that the parametrization
procedure for these functionals is quite robust.

Table 2 shows the B-N bond dissociation energies of
trifluoromethyl substituted amine boranes (CF3)nH3-nB-NH3.
These compounds were studied in ref 36, which concluded
that conventional DFT functionals failed to reproduce the
steep increase in bond energy upon fluorination. The best
DFT results were obtained with the MPW1K kinetics global
hybrid. This was justified by the observation that MPW1K

is designed to model transition states, and by the claim that
“incompletely bound” transition states mimic datively bonded
systems.36

Calculations in Table 2 use the 6-311++G(3df,2p) basis.
They include HF/6-31+G(d) zero-point energy corrections
empirically rescaled by 0.9153, following ref 36. The
counterpoise corrections are somewhat larger than in Table
1, though they are <2 mH in all but a few systems. The
B3LYP, B3PW91, and MPW1K bond energies are a few
kilocalories per mole smaller than the corresponding non-
counterpoise-corrected 6-311++G(d,p) values in ref 36.
Aug-cc-pVTZ calculations give counterpoise-corrected PBE-
D, B97-D, and M06-2X dissociation energies within (0.2
kcal/mol of Table 2. This indicates that the results are
unlikely to be a basis set artifact.

The most important result in Table 2 is the accuracy of
the PBEsol GGA and the dispersion-corrected PBE-D and
TPSS-D functionals. As in Table 1, these methods all
improve upon MPW1K at this level of theory and approach
M06-2X. Table 2 also supports refs 40 and 41 in demon-
strating that M06-2X is very accurate for these systems. As
in Table 1, B97-D significantly underbinds relative to PBE-D
and TPSS-D.

The other nonempirical functionals in Table 2 perform less
well. LSDA strongly overbinds, as expected, and PBE and
TPSS tend to underbind. But even these functionals, like
BPW91, outperform B3LYP for this system.

The non-counterpoise-corrected MPW1K/6-311++G(d,p)
results reported in ref 36 are better than any functionals in
Table 2 in reproducing the non-counterpoise-corrected MP2/
6-311++G(d,p) reference values. This is partly an artifact
of a cancellation between finite basis set error and basis set
superposition error (BSSE). Omitting the counterpoise cor-
rection gives PBEsol, PBE-D, TPSS-D, and M06-2X MAE
of 2.7, 2.8, 2.0, and 1.7 kcal/mol vs the reference values in
Table 2. These are comparable to the 1.9 kcal/mol MAE
reported for MPW1K in ref 36. Additionally, new counter-
poise-corrected MP2/aug-cc-pVTZ calculations at MP2/cc-
pVTZ geometries give binding energies of -37.9, -48.6,
and -57.3 kcal/mol for the three molecules in Table 2. These
are 3-5 kcal/mol below the corresponding noncounterpoise-
corrected MP2/6-311++G(2d,2p) values in ref 36. Compar-
ing the calculations in Table 2 to these new reference values
gives PBEsol, PBE-D, TPSS-D, MPW1K, and M06-2X
MAE of 3.4, 1.7, 1.4, 1.3, and 1.4 kcal/mol. PBE-D, TPSS-
D, and M06-2X are again comparable to MPW1K.

The accurate performance of PBEsol, PBE-D, and TPSS-D
in Tables 1and 2 suggests that accurate performance for
“incompletely bound” transition states is not necessary for
modeling dative bonds. Unlike MPW1K and M06-2X, these
functionals contain no HF exchange and cannot adequately
predict gas-phase reaction barriers. This is illustrated in Table
3, which shows statistical errors in the BH6 set of repre-
sentative hydrogen-transfer reaction barrier heights.64 Ge-
ometries for this data set are from ref 64, and spin-orbit
corrections are from ref 65. PBEsol’s poor performance for
reaction barriers was also shown in ref 66. I suggest that a
method’s description of medium-range correlation, and not

Table 2. B-N Bond Dissociation Energies (kcal/mol) for
Trifluoromethyl Substituted Amine Boranesa

method (CF3)H2B-NH3 (CF3)2HB-NH3 (CF3)3B-NH3 MAE

reference -40.4 -52.6 -62.6
LSDA -51.7 -60.1 -67.4 7.9
PBEsol -44.3 -51.8 -57.8 3.2
PBE -38.3 -45.7 -51.1 6.8
TPSS -36.7 -44.6 -50.6 7.9

PBE-D -41.0 -49.7 -56.4 3.2
TPSS-D -40.3 -50.0 -57.6 2.6
B97-D -33.6 -42.6 -49.4 10.0

B3LYP -33.5 -42.0 -48.3 10.6
B3PW91 -36.1 -44.1 -50.1 8.4
MPW1K -38.6 -47.8 -54.8 4.8
M06-2X -39.2 -49.9 -59.1 2.5

a Counterpoise-corrected 6-311++G(3df,2p) calculations.
Reference MP2/6-311++G(d,p) results are from ref 36.
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its treatment of transition states, is the decisive factor for
modeling dative bonding.

3.2. Geometries of Substituted Amine Boranes. The
B-N bond length in amine boranes and related compounds67

is sensitive to crystal packing effects,13-15 making it inap-
propriate to compare gas-phase calculations with experi-
mental crystal structures. Reference 36 collected gas-phase
experimental structures for three substituted amine boranes.
That reference concluded that, as for bond energies, MPW1K
provided the most accurate treatment of bond lengths.

Table 4 shows how several DFT methods reproduce these
experiments. The table shows the equilibrium B-N bond
lengths from 6-311++G(3df,2p) calculations on H3B-
NH3, H3B-NMe3, and Me3B-NMe3. The B3LYP and
MPW1K results are within 0.01 Å of the 6-311++G(d,p)
results in ref 36. Test calculations indicate that the results
are unlikely to be a basis set artifact. Aug-cc-pVTZ calcula-
tions with PBEsol, PBE-D, B97-D, and M06-2X give bond
lengths 0.002 Å longer than those in Table 4 for H3B-NH3,
and within (0.001 Å of those in Table 4 for the other two
molecules.

The accurate performance of PBE-D, TPSS-D, and M06-
2X for dative bond energies carries over to bond lengths.
These methods provide the most accurate results in Table 4.
All three outperform both the MPW1K/6-311++G(3df,2p)
geometries in Table 4 and the MPW1K/6-311++G(d,p)
geometries reported in ref 36. While TPSS gives the lowest
MAE among nonempirical functionals, it overestimates the
bond length of the most highly substituted compound.

(Similar errors for conventional DFT functionals were shown
in ref 36.) This overestimation is improved by the “-D”
dispersion correction, illustrating the importance of medium-
range correlation in this highly substituted system.

As mentioned above, B97-D overestimates all of the B-N
bond lengths, giving the largest MAE of any tested func-
tional. The accurate PBE-D and TPSS-D results suggest that
this is not a failure of the dispersion correction but a
limitation of the B97-D parametrization. This result rational-
izes B97-D’s poor performance for the bond energies/
enthalpies in Tables 1 and 2. (Here, it is appropriate to
reiterate B97-D’s accuracy for other systems.51)

3.3. Bond Strength and Bond Length in HCN-BF3.
Reference 38 characterized the gas-phase structure and B-N
binding energies of the HCN-BF3 dative bond. Comparisons
to accurate MC-QCISD or MG3 results showed that, while
some conventional functionals gave reasonable geometries,
all tended to underestimate bond energies. Table 5 shows
HCN-BF3 B-N bond lengths and dissociation energies for
the functionals considered here. These counterpoise-corrected
aug-cc-pVTZ results differ slightly from the non-counterpoise-
corrected results in ref 38. The counterpoise corrections are
<1 mH, indicating that the basis set is reasonably saturated.

The results in Table 5 reiterate those in Tables 1-4. PBE-
D, TPSS-D, and M06-2X accurately model both the bond
length and the dissociation energy, providing significant
improvements over the B3PW91, B3LYP, and MPW1K
global hybrids. PBEsol strikes a balance between the
overbinding of LSDA and the underbinding of PBE, though
(as in Table 4), it underestimates the dative bond length.
Unlike the other dispersion-corrected functionals, B97-D
severely overestimates the bond length and underestimates
the bond energy. The spread in bond length errors is much
larger than in Table 4, indicating that the bond has a shallow
minimum.

3.4. Basis Set Dependence. Previous studies have indi-
cated that dative bonds strongly depend on the one-electron
basis set.36,38 Given this, it is of interest to test the basis set
dependence of the density functionals used here. Figure 2
shows the basis set dependence of a representative system:
the equilibrium B-N bond length and counterpoise-corrected

Table 3. Mean Errors ME and Mean Absolute Errors MAE
(kcal/mol) in BH6 Hydrogen-Transfer Reaction Barrier
Heightsa

method ME MAE

LSDA -17.9 17.9
PBEsol -12.8 12.8
PBE -9.4 9.4
PBE-D -9.8 9.8
TPSS-D -8.8 8.8
B97-D -6.0 6.3
MPW1K -1.1 1.4
M06-2X -0.7 1.2

a Aug-cc-pVTZ calculations.

Table 4. Equilibrium B-N Bond Lengths (Å) for Methyl
Substituted Amine Boranesa

method H3B-NH3 H3B-NMe3 Me3B-NMe3 MAE

exptl 1.658(2) 1.656(2) 1.70(1)
LSDA 1.606 1.599 1.682 0.043
PBEsol 1.628 1.621 1.714 0.026
PBE 1.647 1.642 1.758 0.027
TPSS 1.663 1.653 1.757 0.021

PBE-D 1.653 1.637 1.734 0.019
TPSS-D 1.672 1.645 1.728 0.017
B97-D 1.692 1.665 1.790 0.044

B3LYP 1.657 1.651 1.785 0.030
B3PW91 1.644 1.637 1.749 0.027
MPW1K 1.632 1.625 1.722 0.026
M06-2X 1.648 1.638 1.722 0.016

a 6-311++G(3df,2p) calculations. Gas-phase experimental
values are taken from ref 36.

Table 5. Equilibrium B-N Bond Lengths (R(B-N), Å) and
Counterpoise-Corrected B-N Dissociation Energies (DE,
kcal/mol) for HCN-BF3

a

method R(B-N) DE

reference 2.472 -5.6
LSDA 1.729 -11.7
PBEsol 1.820 -6.4
PBE 2.410 -4.0
TPSS 2.243 -3.7

PBE-D 2.362 -5.2
TPSS-D 2.234 -5.3
B97-D 2.682 -3.9

B3LYP 2.535 -3.5
B3PW91 2.465 -2.9
MPW1K 2.323 -4.2
M06-2X 2.385 -6.2

a Aug-cc-pVTZ calculations without zero-point or thermal
corrections. Reference MC-QCISD results are from ref 38.
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bond energy of Me3B-NMe3. The figure shows the bond
energy (top) and bond length (bottom) evaluated in a variety
of basis sets. Results are evaluated relative to the large
6-311++G(3df,3pd) basis set. All of the methods tested here
have roughly comparable basis set dependence. This is
encouraging given previous reports41 of large basis set effects
for the Minnesota functionals. All methods show a rather
large basis set dependence for bond lengths. However, bond
lengths and bond energies are fairly well converged in the
“desert island double-�”68 6-31+G(d,p) basis set. This basis
set should provide a reasonable compromise for modeling
larger systems such as frustrated Lewis pairs.

3.5. Application to Larger Systems. One goal of this
work is to find computationally inexpensive DFT methods
for modeling the large, sterically congested substituted
boranes relevant to frustrated Lewis pairing.21 An important
drawback of conventional semilocal and hybrid density
functionals is that their errors tend to increase with system
size. For example, the mean absolute error in B3LYP
enthalpies of formation increases from 3.08 kcal/mol for the
G2/97 test set of 147 small molecules, to 8.21 kcal/mol for
the 75 larger molecules in the G3-3 set.69 However, the
parametrized and dispersion-corrected functionals tested here
were constructed to provide comparable accuracy for both
small and large systems. These functionals’ accuracy for
large systems has been amply demonstrated in the literature.
Reference 48 showed that M05-2X, PBEsol, and empirically
dispersion-corrected functionals accurately predicted isomer-
ization energies of large organic molecules. Comparable
performance for M06-2X was demonstrated in ref 70.
Reference 71 showed that dispersion-corrected semilocal
functionals accurately predict intermolecular interaction
energies for a data set containing both small (e.g., (H2O)2)
and relatively large (e.g., phenylalanine-tryptophan) biologi-
cally relevant complexes.4 (Further applications of empirical
dispersion corrections to large molecules are reviewed in ref

51.) Reference 70 showed that M06-2X gives a mean
unsigned error of only 2.86 kcal/mol for the aforementioned
G3-3 set of larger molecule thermochemistries, as well as a
mean unsigned error of 5.7 kcal/mol (vs 26.2 kcal/mol for
B3LYP) for 14 “large molecule” (>55 valence electrons)
atomization energies. Given this, it seems reasonable to
expect that the accurate performance shown above for M06-
2X and PBE-D will carry over to larger molecules.

Table 6 illustrates some of the methods tested here for
two relatively large systems. (F5C6)3B-P(t-Bu)3(t-Bu )
C(CH3)3) is a weakly bound frustrated Lewis pair (ref 21)
that performs heterolytic H2 splitting under relatively mild
conditions.20 (F3C)3B-P(t-Bu)3 was predicted in ref 23 to
have a B-P dissociation energy of 69 kcal/mol, which is
very high for a “weak” dative bond. These systems were
modeled in ref 23 using the composite three-layer ONIOM
G2R3 method at two-layer ONIOM MPW1K geometries.72,73

Table 6 presents 6-31+G(d,p) calculations of the equi-
librium B-P bond length and counterpoise-corrected bond
energy of (F5C6)3B-P(t-Bu)3 and (F3C)3B-P(t-Bu)3. Cal-
culations include HF/3-21G zero-point corrections rescaled
by 0.9207, following ref 23. The maximum counterpoise
corrections are 2.8 kcal/mol for (F3C)3B-P(t-Bu)3 and 2.3
kcal/mol for (F5C6)3B-P(t-Bu)3, indicating that the basis set
is moderately saturated. PBE-D/6-311++G(2d,2p) calcula-
tions at the PBE-D/6-31+G(d,p) geometries give counterpoise-
corrected binding energies within (0.1 kcal/mol of those in
Table 6, providing further confidence in the results.

Interestingly, M06-2X and PBE-D provide similar geo-
metric and energetic predictions for both systems in Table
6. The bond energies are significantly smaller than the high-
level composite values reported in ref 23. This appears to
arise from basis set superposition error in the composite
method. Reference 23 reported BSSEs of 18.2 and 10.6 kcal/
mol in the composite method’s dative bond dissociation
energies for (F3C)3B-PPh3 and (F5C6)3Al-P(CH3)3 and
estimated an average 14-15 kcal/mol BSSE for all molecules
tested. Simply transferring the (F3C)3B-PPh3 BSSE to
(F3C)3B-P(t-Bu)3 and the (F5C6)3Al-P(CH3)3 BSSE to
(F5C6)3B-P(t-Bu)3 gives dissociation energies within ∼6 and
∼3 kcal/mol of the respective PBE-D values. Additional
insight into BSSE may be obtained from the B-N dissocia-
tion energy of (CF3)3B-N(CH3)3, a somewhat smaller
molecule treated in ref 23. That reference reported dissocia-
tion energies of 67 kcal/mol for noncounterpoise-corrected

Figure 2. Basis set dependence of B-N bond energy (top)
and bond length (bottom) in (CH3)3B-N(CH3)3. Counterpoise-
corrected geometry-optimized calculations. Results are rela-
tive to the large 6-311++G(3df,3pd) basis set.

Table 6. Equilibrium B-P Bond Lengths (R(B-P), Å) and
Counterpoise-Corrected B-P Bond Energies (DE, kcal/
mol) for (F5C6)3B-P(t-Bu)3 and (F3C)3B-P(t-Bu)3

a

(F3C)3B-P(t-Bu)3 (F5C6)3B-P(t-Bu)3

method DE R(B-P) DE R(B-P)

reference -69 2.163 -19 3.838
LSDA -49 2.118 -12 3.476
PBEsol -31 2.178 -1 4.123
PBE -27 2.184 0 4.700
PBE-D -45 2.133 -11 3.809
B97-D -38 2.168 -10 3.963
MPW1K -30 2.143 1 4.975
M06-2X -44 2.122 -10 3.722

a 6-31+G(d,p) calculations, reference values from ref 23.
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MP2/6-311++G(d,p) and 64 kcal/mol for the composite
method. New MP2/6-311++G(d,p) calculations give a non-
counterpoise-corrected dissociation energy of 66.47 kcal/mol,
and a corresponding counterpoise-corrected dissociation
energy of only 52 kcal/mol. Counterpoise-corrected MPW1K,
PBE-D, and M06-2X calculations give dissociation energies
of 49, 58, and 63 kcal/mol, respectively. PBE-D and M06-
2X binding energies are somewhat larger than MP2, which
is reasonable given that MP2 should underbind in this
relatively small basis set.

As in Tables 1-5, PBE and MPW1K both predict dative
bonds that are significantly weaker than M06-2X or PBE-
D. The relatively weak PBEsol bond in (F5C6)3B-P(t-Bu)3

is somewhat surprising and suggests that medium-range
correlation plays an unusually large role. The 4.975 Å
MPW1K bond length in (F5C6)3B-P(t-Bu)3 is significantly
longer than the 3.838 Å MPW1K/ONIOM bond length
obtained in ref 23. This difference may result from the small
(3-21G) ligand basis set used in ref 23. MPW1K calculations
in the 6-31G(d) and 3-21G basis sets yield B-P bond lengths
of 4.388 and 3.631 Å, respectively, for this system.

The (F5C6)3B-P(t-Bu)3 molecule shown in Table 6 also
provides an opportunity to illustrate the relative computa-
tional expense of these methods. Figure 3 shows the average
time per SCF cycle in a single-point 6-31+G(d,p) calculation
on this system.74 Of course, computational times strongly
depend on details of the implementation and hardware, and
these results should be taken as no more than a rough guide.
But this reiterates that hybrids like MPW1K and M06-2X
typically have a computational cost significantly higher than
dispersion-corrected semilocal functionals.

4. Conclusions

Previous DFT studies of dative bonds to substituted boranes
indicated systematic failures of standard approximate ex-
change-correlation functionals. The results presented here
show that the nonempirical PBEsol GGA gives accurate
energies and reasonable (though overbound) geometries for
a range of dative bonds. This extends previous indications48

that PBEsol, which was built to model condensed phases,
can mimic chemically important “medium-range” electron
correlation effects. Adding empirical dispersion corrections
to the nonempirical PBE and TPSS functionals gives even

higher overall accuracy, while maintaining a modest com-
putational cost. These contrast with the dispersion-corrected
B97-D GGA, which significantly overestimates B-N bond
lengths. These results also support and extend previous
indications40,41 that the Minnesota functionals are very accurate
for these systems. The entire suite of M06 functionals shows
particularly notable accuracy for relative binding trends. How-
ever, applications to larger systems reiterate the value of the
computationally cheap “-D” methods.

These results should extend the options available for
modeling dative bonds in large systems. Dispersion-corrected
nonempirical semilocal functionals offer the best overall
balance between cost and accuracy, with only a modest
degree of empiricism. M06-2X provides the highest numer-
ical accuracy in systems where global hybrids are affordable.
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(41) Rakow, J. R.; Tüllmann, S.; Holthausen, M. C. J. Phys. Chem.
A 2009, 113, 12035.

(42) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.;
Sieber, S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357.

(43) Janesko, B. G.; Henderson, T. M.; Scuseria, G. E. Phys.
Chem. Chem. Phys. 2009, 11, 443.

(44) Schwalbe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007,
9, 3397.

(45) Johnson, E. R.; Becke, A. D.; Sherrill, C. D.; Di Labio, G. A.
J. Chem. Phys. 2009, 131, 034111.

(46) Wheeler, S. E.; Houk, K. N. J. Chem. Theory Comput. 2010,
6, 395.

(47) Perdew, J. P.; Ruzsinszky, A.; Csonka, G. A.; Vydrov, O. A.;
Scuseria, G. E.; Constantin, L. I.; Zhou, X.; Burke, K. Phys.
ReV. Lett. 2008, 100, 136406.

(48) Csonka, G. I.; Ruzsinszky, A.; Perdew, J. P.; Grimme, S.
J. Chem. Theory Comput. 2008, 4, 888.

(49) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996,
77, 3865–3868; 1997, 78, 1396(E).

(50) Ahlrichs, R.; Penco, R.; Scoles, G. Chem. Phys. 1977, 19,
119.

(51) Grimme, S.; Antony, J.; Schwabe, T.; Mück-Lichtenfeld, C.
Org. Biomolec. Chem. 2007, 5, 741.

(52) Schwabe, T.; Grimme, S. Acc. Chem. Res. 2008, 41, 569.

(53) Minenkov, Y.; Occhipinti, G.; Jensen, V. R. J. Phys. Chem.
A 2009, 113, 11833.

(54) Gaussian DeVelopment Version, Revision H.07; Frisch,
M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;
Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.;
Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta,
J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.;
Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand,
J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.;
Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.;
Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo,
J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador,
P.; Dannenberg, J. J.; Dapprich, S.; Parandekar, P. V.;
Mayhall, N. J.; Daniels, A. D.; Farkas, O.; Foresman, J. B.;
Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.:
Wallingford, CT, 2009.

(55) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.

(56) Krishnan, R.; Binkley, J.; Seeger, R.; Pople, J. J. Chem. Phys.
1980, 72, 650.

(57) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.

(58) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58,
1200–1211.

(59) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys.
ReV. Lett. 2003, 91, 146401.

(60) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101.

(61) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 13126.
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Abstract: A modified version of the Boys localization method is proposed in order to make the
domain-specific basis set approach in the framework of the incremental scheme (J. Chem. Phys.
2008, 129, 244105) generally applicable. The method optimizes the molecular orbitals in one
atomic orbital basis set to be similar to localized molecular orbitals in a second atomic orbital
basis set under the constraint that the molecular orbitals stay orthonormal. The procedure is
tested for RI-MP2 incremental correlation energy expansions for aromatic systems like
naphthalene, anthracene, and tetracene as well as for conjugated hydrocarbon chains like C20H2,
C20H22, or p-quaterphenyle. For all investigated systems, a rapid convergence of the incrementally
expanded correlation energies to the exact RI-MP2 energies is found. Furthermore, the
systematic improvability of the approach is demonstrated.

I. Introduction

Density functional theory (DFT) is today’s most important
quantum chemical method for applications to large systems.
The price one has to pay for the increased range of
applicability is a lack of systematical improvability. In
contrast to DFT methods, wave-function-based correlation
methods like many-body perturbation theory (MBPT), con-
figuration interaction (CI), or coupled cluster (CC) are
systematically improvable, but their unfavorable scaling with
respect to the system size limits their application to small-
or medium-sized molecules. The basic idea of local correla-
tion methods is to overcome the unfavorable scaling behavior
of the post Hartree-Fock methods by exploiting the local
character of the electron correlation. During the past few
decades, the development of local correlation methods was
an active field in the quantum chemistry community.1-22

Within the local domain approximation of Pulay and
Saebø,3,23 very efficient local versions of MP2,24,25 CCSD,5

and CCSD(T)26 are available for molecular systems. The
extension to periodic systems has been implemented in the
CRYSCOR program27-29 at the MP2 level of theory.
Recently, Subotnik and co-workers proposed the use of

bump-functions to obtain smooth potential energy surfaces
for this type of approach.6,30,31 The extension of the Pulay
approach to MRCI theory was recently proposed by Carter
and co-workers.14,32

A conceptually different strategy to obtain a local cor-
relation method is to divide the total system into small
fragments and calculate the total energy on the basis of
calculations of the small fragments. Within this category,
the fragment molecular orbital approach,7,33 the divide and
conquer approach,10,11 the cluster-in-molecule approach,22,34

the systematic fragmentation method,12 and the natural linear
scaling coupled cluster9,35 were proposed. Another fragment-
based local correlation approach is the incremental scheme
of Stoll.4,36,37 It is a generalization of the Bethe-Goldstone
expansion as introduced to the quantum chemistry com-
munity by Nesbet.1,38,39 In an incremental calculation, the
total correlation energy is expanded in a series of correlation
energies of small domains:40-42

where X is the summation index, D is the set of domains,
P (D) is the power set of D, and O is the order of the
expansion. The general increment ∆εX is defined as* E-mail: joachim_friedrich@gmx.de.

Ecorr ) ∑
X

X∈P (D)∧|X|eO

∆εX (1)
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where εX is the correlation energy of the domain X. Since
1992, the incremental scheme was successfully applied to
periodic systems43-48 and finite systems.40-42,49-52 Recently,
the incremental scheme was also successfully applied to
describe adsorption processes.53-56 The drawback of the
method so far was the large amount of hand work required
to obtain a correlation energy according to eq 1. Due to the
nature of the power set in eq 1, the number of calculations
increases very rapidly if the number of domains increases.
Since the higher-order increments become negligibly small
if the distance of the one-site domains increases, one can
safely neglect them without affecting the total accuracy of
the calculation. In medium-sized molecules, the number of
non-negligible increments is still on the order of 100, and
an incremental calculation gets tedious for the one doing
computations. To overcome this drawback, we proposed a
fully automated implementation of the incremental scheme
for molecular systems.51 With this tool, we were able to
investigate the performance of the incremental scheme for
MP2, CCSD, CCSD(T), and RCCSD energies with respect
to accuracy and efficiency.40-42,51,52,57,58 Furthermore, the
approach was extended to molecular dipole moments and
quadrupole moments,59 to treat the core-valence correlation
in an efficient manner60 and to explicitly correlated MP2
and CCSD theory.61

Recently, we proposed a domain-specific basis set ap-
proach for incremental evaluations of the coupled cluster
singles and doubles and perturbative triples (CCSD(T))
energies.41,42 It was demonstrated that the approach leads
to a significant reduction of RAM and disk space require-
ments as well as CPU time. Due to the fact that the
incremental scheme is inherently parallel, the computations
of single increments were distributed over 20-50 nodes of
a cheap cluster of standard PCs with a standard 100 megabit
Ethernet connection. The key step in this approach is the
reduction of the AO basis set in the incremental energy
calculations. Since the domains are associated with a local
region in space, one can divide the total AO basis set into
two parts, the active part, which is spatially close to orbitals
in the domain, and the environment, which is the rest of the
system. Now we use the large original basis set in the active
part and a small basis set in the environment. In order to
obtain a set of local and orthogonal orbitals in the new basis
set, we perform a Hartree-Fock (HF) calculation with a
subsequent Boys localization.62 The main problem associated
with this procedure is the identification of the occupied
orbitals of the domain in the new basis set. In the imple-
mentation in ref 42, the mapping of an occupied orbital φa

in the basis B1 to the occupied orbital φa′ in the basis B2

was accomplished by identifying their centers of charge Rba:

This procedure works very well if a unique maximum of
the Boys functional exists, e.g., in σ-bonded hydrocarbons,
water clusters, etc. For systems with more than one possible

localization maximum, this procedure fails, since the map-
ping in eq 3 is usually not fulfilled for all occupied orbitals
of the system. In this work, a modified Boys localization
procedure is implemented, where eq 3 holds for all localized
orbitals of a system. The key step of the localization is to
use the overlap of the molecular orbitals to a second local
set of orbitals, which was previously introduced by Angeli
et al.63 as well as by Ahmadi and Røggen.64 Within the
framework of the incremental scheme, the approach is tested
for various critical systems at the RI-MP2 level using the
TURBOMOLE program package.65

II. Theory

The incremental scheme and the applied approximations were
discussed in detail in refs 43 and 48-50. Therefore, we just
give a brief introduction of the applied approximations.

A. The Incremental Method. Equation 1 combines the
correlation energies of small subsystems in a systematic
manner to obtain a controllable and systematically improv-
able approximation of the total correlation energy without
calculating the correlation energy of the whole system. The
starting point of such a calculation is localized HF orbitals
obtained by a standard procedure like Boys62 or
Pipek-Mezey.66 Since eq 1 requires disjoint subsets of
occupied orbitals, the automatic domain generation of ref
51 is applied to accomplish this task. This method transforms
the problem into a graph partitioning problem and applies a
standard library routine67 to obtain the desired domains.

1. Localized Orbitals and Perturbation Theory. In order
to use localized orbitals in combination with an unmodified
MP2 code, one has to account for the fact that the Fock
matrix is not diagonal in this basis. In the framework of the
incremental scheme, this can be done by diagonalization of
the Fock matrix in the active space of the domain. In this
way, the incremental expansion ensures the canonical condi-
tion, since the higher orders correct for the nondiagonal Fock
matrix.41,42,59

2. Distance Screening. The distance screening is an
essential ingredient for an efficient incremental approach,
since the number of calculations Ncalc grows very rapidly
with increasing order O and number of domains |D|.

Therefore, a straightforward application of eq 1 including
all possible terms is usually not efficient with respect to CPU
time. On the other hand, most of the increments are
negligibly small, and one can neglect them without affecting
the total accuracy of the calculation. The magnitude of an
increment depends on the distances of the one-site domains
as well as on the order of the increment (the number of one-
site domains in the n-site domain).41,42 Therefore, we
introduced the order-dependent distance parameter to remove
the negligible increments from the expansion:

∆εX ) εX - ∑
Y

Y∈P (X)∧|Y|<|X|

∆εY (2)

Rba(B1) f Rba(B2) (3)

Ncalc ) ∑
i)1

O (|D|
i ) (4)

tdist )
f

(O - 1)2
O g 2
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where f is an adjustable parameter with typical values of
about 30 Bohr.

3. Domain-Specific Basis Set Approach. The second
ingredient for an efficient incremental approach is the
domain-specific basis. The basic idea of this approximation
is the fact that virtual orbitals far from the domain do not
significantly contribute to the correlation energy of an
arbitrary domain. Therefore, one can use a smaller basis set
for the environment of a domain.41,42,68 For a systematic
choice of the basis set, we use a sphere with the radius tmain

for every occupied orbital associated with a given n-site
domain (labeled with X). This means we map a set of
atoms to every occupied orbital of the domain:

where the rb are coordinates of atoms in the molecule. The
active part AX of an n-site domain is obtained by unifying
the sets associated with the orbitals of the domain:

where the sets X′ have to be introduced formally to account
for the fact that n-site domains are sets of sets of occupied
orbitals. Now we use the large original basis for all atoms
in AX, and the rest of the molecule is treated with the
smaller basis set. In order to obtain local orthogonal orbitals,
a HF calculation with a subsequent localization is performed
(vide infra). Besides the reduction of CPU time, the domain-
specific basis set approach reduces the number of two-
electron integrals significantly and therefore the disk and
RAM space requirements.

The key step in this approach is the mapping of a set of
local occupied orbitals in one basis to a set of local occupied
orbitals in another basis set (eq 3). This mapping step is
problematic, since in many real life molecules the set of local
orbitals is not unique for symmetry reasons. This can be
easily demonstrated using the centers of charge of anthracene
(Figure 1): In the ring systems, one can identify the alternat-
ing single and double bonds as usually drawn in the Lewis
structure. Considering another resonance structure, one can
immediately see that there is another equivalent choice for
the centers of charge, where the Boys functional has a
maximum. The Boys functional just maximizes the distances
of the centers of charges, and both localization maxima are
equivalent due to symmetry. Therefore, it is usually not
predictable to which extremum the Boys localization
converges.

B. Template Localization. The standard Boys localiza-
tion procedure does not necessarily yield occupied orbitals
which are sufficiently similar (vide supra), if different AO
basis sets are used in a calculation. Therefore, we impose a
further condition to accomplish this requirement. The starting
point of the procedure is a set of local occupied orbitals
(template orbitals) in a small AO basis set B2. The idea is
now to make the occupied HF orbitals in a second AO basis
B1 as equal as possible to the template orbitals without
affecting their orthogonality. This can be accomplished by
maximizing the functional:

where φk
B1 refers to molecular orbitals in the basis B1 and

φk
B2 represents orbitals in the basis B2. Note that conceptu-

ally similar functionals were proposed by Angeli et al.63 and
Ahmadi and Røggen.64 A maximization of the functional in
eq 7 leads to a set of target functions in the basis B1 which
are similar to the template functions in the basis B2. In
order to preserve the orthogonality, we use orthogonal 2 ×
2 rotations to perform the transformations. This means the
matrices Oij which mix the orbitals φi and φj have the form

or

where R is the rotation angle. In contrast to the Edmiston-
Ruedenberg optimization scheme,69 where only 2 × 2
rotations of the type in eq 8 are applied, we need more
flexibility with the second type of rotations in eq 9. A simple
example for the need of the second type of rotations is the
interchange of two orbitals: We assume that the second set
of orbitals is equal to the first set of orbitals, except for a
swap of two orbitals. The optimal step is now to swap the
two orbitals back, without changing the sign, which corre-
sponds to the second type of rotations. This can be seen
explicitly in eq 16 and eq 19 if the corresponding matrix
elements are calculated. Equation 19 will find the rotation,
whereas eq 16 does not. Since the optimization maximizes
the value of D, we have to deal with the second type of
rotations in order to include all possible orbital transformations.

With the first matrix, the orbitals read

Inserting the ansatz into eq 7, we obtain

Now, we define � by

Figure 1. Centers of charge (spheres) for the Boys-localized
occupied orbitals of anthracene.

φi f { rbi1
, rbi2

, ...} ) Aφi
(5)

AX ) ∪
φi∈X′

Aφi
X′ ) ∪

X∈X
X (6)

D ) ∑
k

〈φk
B1|φk

B2〉 (7)

Oij ) ( cos(R) sin(R)
-sin(R) cos(R) )ij

(8)

Oij ) (-cos(R) sin(R)
sin(R) cos(R) )ij

(9)

〈φ̃i
B1| ) cos(R)〈φi

B1| + sin(R)〈φj
B1|

〈φ̃j
B1| ) -sin(R)〈φi

B1| + cos(R)〈φj
B1|

(10)

Dij(R) ) ∑
k*i,j

〈φk
B1|φk

B2〉 + cos(R)[〈φi
B1|φi

B2〉 + 〈φj
B1|φj

B2〉]

+ sin(R)[〈φj
B1|φi

B2〉 - 〈φi
B1|φj

B2〉]

) ∑
k*i,j

〈φk
B1|φk

B2〉 + cos(R) Aij + sin(R) Bij

(11)
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Using this definition, we arrive after some algebraic ma-
nipulations at

Since the prefactor of the cosine is always positive, the
functional in eq 13 is maximal if the cosine is +1 and
minimal if the cosine is -1. This is fulfilled if R - � ) 0
and R - � ) π, and thus we get

Explicitly, the angle Rmax is calculated as

Up to now, we found the maximal increase for D(R) for
a given pair of functions 〈φi

B1|, 〈φj
B1|. In order to find the

maximum increase of D(R) with respect to the choice of all
possible orbital pairs i, j, we use the matrix Dmax with the
entries

The difference between the Dij
max(R) and D yields the

increase of the functional D with respect to a 2 × 2 rotation
of the orbitals i, j. Therefore, the matrix Dmax contains all
possible changes. Note that we do not have a dependence
on the rotation angle R, since we insert the maximal increase
for every orbital pair.

Before we proceed with the final optimization step, we
have to consider the second type of rotation in eq 9. In this
case, the orbitals read

In the further calculation, we obtain basically the same
equations as above. The only difference is the definition of
Aij and Bij in the square root:

where the prime is used to indicate rotations of the second
type. For the second type of rotations, eq 16 reads

The final optimization setup is as follows: We search the
largest value in Dmax and D′max to find the orbital pair with
the largest increase of D and perform the associated 2 × 2
rotation. This is repeated, until all off diagonal elements in
Dmax and D′max are lower than a given threshold.

The straightforward application of the procedure above
might lead to delocalized orbitals, if the optimization

procedure ends in a local maximum. The reason for this is
that the locality of the orbitals comes only implicitly due to
the locality of the template orbitals. To overcome this
problem, we use Boys orbitals as an initial guess, apply the
procedure above, and finally perform a second Boys local-
ization at the end. The first two orthogonal transformations
create a set of local orbitals with charge centers close to the
template functions. The final Boys localization ensures that
the orbitals fulfill an explicit localization criterion; i.e., the
Boys functional is maximal.

The composition of these three orthogonal transformations
leads to a sufficiently stable algorithm to perform incremental
calculations within the domain-specific basis set approach.
Note that the orbitals of the composite transformation are
not equivalent to Boys orbitals obtained by a standard one-
step localization.

III. Computational Details

If nothing else is stated, the geometries were optimized at
the RI-BP86/TZVP level of theory using the TURBOMOLE
quantum chemistry program package.65,70-74 Stationary
points were characterized by analyzing the Hessian matrix.75

The RI-MP2 energies were computed with the ricc2 module76

of TURBOMOLE 5.10. The necessary data such as the Fock
matrix, the localization matrix, dipole integrals, as well as
the overlap matrix of two different AO basis sets were
obtained by an interface to a development version of
TURBOMOLE.

A. Incremental Calculations. The threshold for the
maximum values in the matrices Dmax and D′max was set to
10-8 in the template localization step, whereas the Boys
localizations were converged to 10-11. The occupied orbitals
in the two basis sets were identified by their centers of charge
with an identification tolerance of 0.1 Bohr. In the incre-
mental energy evaluations, the RI basis (cbas) of the large
original basis set was used for the total system. To get an
overview of the applied truncation parameters in our
incremental calculations, we included a list of the parameters
with a short description (Table 1). In the environment, the
SVP basis was applied for all systems in this study.

IV. Applications

A critical test for the stability of the proposed procedure is
the evaluation of increments within the domain-specific basis
set approach. First, the incremental scheme requires a large
number of calculations; e.g., in order to get a single
correlation energy, it is not unusual that a few hundred
correlation calculations are necessary. In the domain-specific

tan � )
Bij

Aij
(12)

Dij(R) ) ∑
k*i,j

〈φk
B1|φk

B2〉 + √Aij
2 + Bij

2 cos(R - �) (13)

Rmax ) � Rmin ) � + π (14)

Rij
max ) arccos( Aij

√Aij
2 + Bij

2) (15)

Dij
max ) [Dij

max(R) - D] ) -Aij + √Aij
2 + Bij

2 (16)

〈φ̃i
B1| ) -cos(R′)〈φi

B1| + sin(R′)〈φj
B1|

〈φ̃j
B1| ) sin(R′)〈φi

B1| + cos(R′)〈φj
B1|

(17)

A'ij ) -〈φi
B1|φi

B2〉 + 〈φj
B1|φj

B2〉
B'ij ) 〈φj

B1|φi
B2〉 + 〈φi

B1|φj
B2〉

(18)

Dij
max ) [Dij

max(R) - D] ) -Aij + √A'ij
2 + B'ij

2 (19)

Table 1. List of the Applied Truncation Parameters

dsp domain size parameter; a rough measure for the size of the
domains51

tcon connectivity parameter; sets the connectivity for far distant
orbitals to zero51

tmain the radius around active orbitals to determine the basis for
the individual calculations (section II.A.3, ref 41)

core number of frozen core orbitals
f parameter for the order dependent distance screening

using f/(O - 1)2 (section II.A.2, refs 41, 42)
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basis set, this means that the localization has to work for
every single calculation. Second, the structure of the basis
for the calculation in the n-site domains is more complicated,
since there might be several regions with different basis sets
in the molecule; e.g., in higher order domains, the orbital
domains are not necessarily local anymore. In cases where
the Boys functional has several symmetry equivalent maxima
like in benzene, it is not predictable and not controllable to
which maximum the Boys localization will converge. With
the proposed algorithm, we were able to overcome this
drawback for all cases tested so far.

The main goal of this work is the test of the potential
accuracy of the domain-specific basis set approach in
combination with the template localization. Within the
efficient RI-MP2 routines in TURBOMOLE,76,77 there is no
need to make local approximations in the correlation part
for the molecules in this study, since the HF calculation
consumes a large part of the CPU time in our calculations.
Clearly, this will change if coupled cluster methods are used.
However, to test the performance of the approach with
respect to the accuracy on a large set of molecules, we
decided to use MP2, since when the domain-specific basis
set approach is used the convergence of the MP2 energies
is similar to the convergence of the coupled cluster
energies.41,42,68

A. Boys Systems. The first issue to study is the perfor-
mance of the new approach for systems where no problems
with the ambiguity of the localization exist, i.e., Boys
systems, in order to investigate how the proposed procedure
might affect the accuracy in these cases.

1. Hydrocarbons. An easy test case for local correlation
methods is the use of unbranched hydrocarbon chains. In
Table 2, we present the results for decane, eicosane, and the
unsaturated C20H22 in the TZVP and in the QZVP basis sets,
respectively. For both saturated hydrocarbons in the TZVP
basis set, the convergence of the incremental series is fast,
and a third-order expansion is sufficient to obtain chemical
accuracy of about 1 kcal/mol. The relative correlation energy
is 100.03% and 100.05% for decane and eicosane, respec-
tively. Increasing the basis set to the quadruple-� level
slightly improves the accuracy of the incrementally expanded
energy. At third-order level, the errors are -0.04 and -0.14
kcal/mol.

More difficult examples for local correlation methods are
conjugated π systems. Therefore, we study C20H22 with
alternating single and double bonds. Using the same trunca-
tion parameters as for the saturated hydrocarbons, the errors
for the unsaturated C20 chain are 0.75 kcal/mol in the TZVP
basis set and 1.08 kcal/mol in the QZVP basis set. Comparing
the accuracy of the RI-MP2 correlation energies for the
saturated hydrocarbons and the unsaturated hydrocarbon, we
find a slightly higher accuracy for saturated hydrocarbons.
We note that the accuracy can be increased by increasing
the domain size parameter (dsp) or the radius for the basis
set truncation (tmain).

2. Water Cluster. The incremental scheme yields very
accurate results for molecular clusters. With the domain-
specific basis set approach, it was demonstrated earlier that
the incremental scheme can be applied very efficiently for
water clusters in the framework of coupled cluster.42,68 Table
3 shows the convergence of the incremental RI-MP2 cor-
relation energies with respect to the exact RI-MP2 correlation
energy for the aug-cc-pVXZ (X ) D,T,Q) basis set series
of Dunning et al.79,80 The accuracy of the incremental
expansions is similar for the applied aug-cc-pVXZ basis sets.
At second order, the errors are on the order of 1 kcal/mol,

Table 2. Convergence of the Incremental RI-MP2 Correlation Energiesa

C10H22 C20H42 C20H22

order Ecorr(i) [a.u.]
error

[kcal/mol] Ecorr [%] Ecorr(i) [a.u.]
error

[kcal/mol] Ecorr [%] Ecorr(i) [a.u.]
error

[kcal/mol] Ecorr [%]

TZVP
1 -1.188660 209.80 78.05 -2.293514 461.38 75.72 -1.995851 489.70 71.89
2 -1.520772 1.39 99.85 -3.021870 4.33 99.77 -2.761895 9.00 99.48
3 -1.523373 -0.24 100.03 -3.030365 -1.00 100.05 -2.775034 0.75 99.96
exact -1.522990 -3.028767 -2.776232

QZVP
1 -1.464292 254.13 78.34 -2.826150 558.80 76.04 -2.460658 587.39 72.44
2 -1.867051 1.39 99.88 -3.710525 3.84 99.84 -3.381958 9.26 99.57
3 -1.869324 -0.04 100.00 -3.716863 -0.14 100.01 -3.395008 1.08 99.95
exact -1.869267 -3.716647 -3.396722

a core ) 10 (C10H22), core ) 20 (C20H42, C20 H22); dsp ) 4; tmain ) 3 Bohr; f ) 25 Bohr (C10H22, C20H42), f ) 30 Bohr (C20 H22); tcon ) 3
Bohr.

Table 3. Convergence of the Incremental RI-MP2
Correlation Energies of the (H2O)13 Cluster in Figure 2
Using the aug-cc-pVXZ Basis Set Series of Dunning and
Co-Workers79,80 a

order Ecorr(i) [a.u.] error [kcal/mol] Ecorr [%]

aug-cc-pVDZ
1 -2.824690 72.96 96.05
2 -2.942911 -1.22 100.07
3 -2.940631 0.21 99.99
exact -2.940959

aug-cc-pVTZ
1 -3.456064 79.23 96.48
2 -3.583812 -0.94 100.04
3 -3.582025 0.19 99.99
exact -3.582320

aug-cc-pVQZ
1 -3.682562 78.49 96.72
2 -3.808779 -0.71 100.03
3 -3.807413 0.14 99.99
exact -3.807641

a core ) 13, dsp ) 4 Bohr, tmain ) 3 Bohr, f ) 25 Bohr, tcon ) 3
Bohr.
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and at third order, they are below 1 kcal/mol (0.21, 0.19,
0.14 kcal/mol).

Finally, we conclude that the convergence of the incre-
mental series in the domain-specific basis-set approach using
template localized orbitals is sufficiently fast, and chemically
accurate results can be obtained for the Boys systems.

B. Non-Boys-Systems. The focus of this work is to
demonstrate the performance of the template localization for
the cases where the simple procedure outlined in ref 42 does
not work, i.e., non-Boys systems. Therefore, we applied the
approach to various systems of chemical interest such as
conjugated π systems and aromatic compounds with a highly
delocalized nature.

1. C20H2. As a first critical test system, we applied the
domain-specific basis set approach in combination with the
template localization to C20H2. This molecule is a challenge
for local correlation methods since it has alternating single
and triple bonds. Furthermore, the treatment of triple bonds
is not possible within the domain-specific basis set approach,
if standard Boys orbitals are used. The problems occur in
the identification of the localized orbitals within two different
basis sets, since the localization is not unique for triple bonds.
For example, maximizing the distances of the charge centers
in a triple bond results in a triangle, which can be rotated
around the bond axis without changing the Boys functional.
Practically, this means that the program terminates with an
error since

is usually not fulfilled for Boys orbitals. With the proposed
localization scheme, the identification of the occupied orbitals
within two different basis sets could be done for all molecules
and for all increments in this study. The performance of the
incremental scheme in combination with template-localized
orbitals is presented in Table 4 for various truncation

parameters (order, dsp, f, and tmain). Using dsp ) 4, f ) 25,
and tmain ) 3 as for the saturated hydrocarbon compounds
above, the error of the RI-MP2/TZVP correlation energy is
3.15 kcal/mol at third order. Increasing the order-dependent
distance threshold f from 25 to 30 Bohr, the error decreases
by about a factor of 2 to 1.42 kcal/mol. A further increase
of f to 40 Bohr does not significantly improve the energy
(entry 4). The error at fourth order is 0.96 kcal/mol for f )
30 and 0.89 kcal/mol for f ) 40 (entries 3 and 5). This small
change in the energies with respect to the distance threshold
f indicates that the significant increments are included already
for f ) 30. This observation is equivalently true when
comparing the entry pairs 10 and 12 and 11 and 13 with a
larger tmain. Increasing the domain size from dsp ) 4 to dsp
) 6 decreases the error to 0.55 kcal/mol (entry 7). Increasing
the radius for the basis set truncation from tmain ) 3 to tmain

) 5 decreases the error to 1.06 kcal/mol for the third order
calculation (entry 10). At the fourth order level, the error is
0.93 kcal/mol (entry 11). For dsp ) 5 and tmain ) 5, the
error is 0.61 kcal/mol at third order and 0.34 kcal/mol at
fourth order (entries 14 and 15). Comparing entries 1 and 8,
we find a slightly smaller fraction of the correlation energy
for the calculation with the larger tmain in entry 8. This
behavior can be explained by the tight distance truncation
with f ) 25 which causes an error around 2 kcal/mol. If we
compare the corresponding entry pairs with f ) 30 (entries
2 and 10), we find that the increase of tmain from 3 to 5 yields
again a higher accuracy. These findings can be explained
by the fact that a larger tmain can lead to larger contributions
of the individual increments. If the distance truncation is as
serious as in entries 1 and 8, it is not surprising that a larger
tmain does not improve the total accuracy, since the sum of
the neglected increments is large for f ) 25 and it was
slightly increased by the increase of tmain. Increasing the basis
set from TZVP to QZVP increases the error slightly from
0.61 to 0.73 kcal/mol (entry 16). Note that the change in the
total energy is ca. 350 kcal/mol in going from TZVP to
QZVP.

From these findings, it is evident that the truncation
parameters can be used to control the accuracy of the
incremental scheme in a systematic manner and that the
template localization works sufficiently well for this difficult
system.

2. Polycyclic Aromatic Hydrocarbons. Next, the proposed
localization procedure is tested for polycyclic aromatic
hydrocarbons (Figure 2). Therefore, we check the perfor-
mance of the approach for naphthalene, anthracene, and
tetracene (Table 5). Considering the accuracy of the incre-
mental series, we obtain errors of about 1 kcal/mol for a
third-order calculation using the same thresholds as for the
saturated hydrocarbons above. The relative correlation energy
ranges from 99.97% to 100.05% in the TZVP basis set. If
the larger QZVP basis set is used, the errors increase slightly
to -0.88 and -1.09 kcal/mol for naphthalene and anthracene,
respectively. Due to the accuracy of the results, we conclude
that polycyclic aromatic hydrocarbons can be treated with
the incremental scheme. As expected for such highly
delocalized systems, they are slightly more difficult to treat
than their saturated counterparts.

Table 4. Dependence of RI-MP2 Correlation Energies,
Errors, and Relative Correlation Energies of C20H2 on the
Truncation Parameters of Table 1a

entry
no. order dsp

f
[Bohr]

tmain

[Bohr]
Ecorr(i)
[a.u.]

error
[kcal/mol]

Ecorr

[%]

basis ) TZVP
1 3 4 25 3 -2.640592 3.15 99.81
2 3 4 30 3 -2.643350 1.42 99.91
3 4 4 30 3 -2.644079 0.96 99.94
4 3 4 40 3 -2.643461 1.35 99.92
5 4 4 40 3 -2.644190 0.89 99.95
6 3 5 25 3 -2.643765 1.15 99.93
7 3 6 25 3 -2.644735 0.55 99.97
8 3 4 25 5 -2.640372 3.28 99.80
9 4 4 25 5 -2.643584 1.27 99.92
10 3 4 30 5 -2.643920 1.06 99.94
11 4 4 30 5 -2.644121 0.93 99.94
12 3 4 40 5 -2.643965 1.03 99.94
13 4 4 40 5 -2.644167 0.90 99.95
14 3 5 40 5 -2.644633 0.61 99.96
15 4 5 40 5 -2.645062 0.34 99.98
exact 2.645605

basis ) QZVP
16 3 5 40 5 -3.201505 0.73 99.96
exact -3.202670

a core ) 20, tcon ) 3 Bohr.

|Rba(B1) - Rba(B2)| < 0.1 Bohr
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A further interesting test system for the localization method
is the p-quaterphenyle molecule in Figure 3. The results of
the third order calculations for different truncation parameters
are given in Table 6. In this case, the results clearly indicate
that one should not use the same truncation parameters as
for the saturated hydrocarbons. On the other hand, the quality
of the third order energies can be improved by increasing
the domain sizes and the radius for the basis set truncation.
With sufficiently large values for dsp and tmain, one can obtain
99.94% of the correlation energy. The error is 1.33 kcal/
mol, which is slightly above the desired error of 1 kcal/mol.
However, this is a critical molecule for local correlation
approaches, and the accuracy is still reasonable.

3. Oligopeptide. As a final example, we included the
oligopeptide in Figure 4. For peptides without aromatic
groups, the domain-specific basis set approach can by applied
in combination with Boys orbitals as demonstrated in ref
41. To obtain a critical test of the proposed localization
procedure, we included histidine, tryptophan, and phenyla-
lanine. The convergence of the incremental series for the
RI-MP2/TZVP correlation energy for this system is given
in Table 7 using two sets of truncation parameters. The
convergence of the incremental series is fast for both
parameter sets since 99.89% and 99.95% of the correlation

energy are recovered at third order. At fourth order, 99.95%
and 99.99% of the correlation energy are recovered. The
absolute errors are still above 1 kcal/mol except for the fourth
order calculation in combination with dsp ) 6 and tmain ) 5
Bohr. The reason for the larger absolute error is the
magnitude of the correlation energy.

Since the convergence of the MP2 correlation energies in
the domain-specific basis set approach is similar to the
convergence of the corresponding coupled cluster energies

Figure 2. RI-BP86/TZVP optimized structures of naphtha-
lene, anthracene, and tetracene. The geometry of the (H2O)13

cluster was taken from ref 78.

Table 5. Convergence of the Incremental RI-MP2 Correlation Energies for Naphthalene, Anthracene, and Tetracenea

naphthalene anthracene tetracene

order
Ecorr(i)
[a.u.]

error
[kcal/mol] Ecorr [%]

Ecorr(i)
[a.u.]

error
[kcal/mol] Ecorr [%]

Ecorr(i)
[a.u.]

error
[kcal/mol] Ecorr [%]

TZVP
1 -0.904435 284.87 66.58 -1.217251 426.96 64.14 -1.401001 651.19 57.45
2 -1.350451 5.00 99.41 -1.879245 11.55 99.03 -2.407246 19.76 98.71
3 -1.359066 -0.41 100.05 -1.898451 -0.50 100.04 -2.437892 0.53 99.97
exact -1.358411 -1.897658 -2.438732

QZVP
1 -1.118346 342.97 67.17 -1.506995 512.63 64.85
2 -1.655905 5.65 99.46 -2.303540 12.79 99.12
3 -1.666305 -0.88 100.08 -2.325659 -1.09 100.07
exact -1.664910 -2.323917

a Naphthalene: core ) 10, dsp ) 4, tmain ) 3 Bohr, f ) inf Bohr, tcon ) 3 Bohr. Anthracene: core ) 14, dsp ) 4, tmain ) 3 Bohr, f ) 30
Bohr, tcon ) 3 Bohr. Tetracene: core ) 18, dsp ) 4, tmain ) 3 Bohr, f ) 30 Bohr, tcon ) 3 Bohr.

Figure 3. RI-BP86/TZVP optimized structure of p-quater-
phenyle.

Table 6. Dependence of RI-MP2/TZVP Correlation
Energies, Errors and Relative Correlation Energies of
p-Quaterphenyle on the Parameters of Table 1a

order dsp f [Bohr] tmain [Bohr]
Ecorr(i)
[a.u.]

error
[kcal/mol] Ecorr [%]

3 4 ∞ 3 -3.303295 -17.19 100.84
3 5 ∞ 6 -3.256601 12.11 99.41
3 6 35 6 -3.273790 1.33 99.94
exact -3.275906

a core ) 24, tcon ) 3 Bohr.

Figure 4. RI-BP86/SV(P) optimized structure of an oligopeptide.
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it seems to be a promising goal to use template localized
orbitals at the coupled cluster level. We note that a significant
reduction of the total CPU time was achieved with the
domain-specific basis set approach at the CCSD(T) level.41

V. Conclusion

We implemented a modified version of the Boys localization
which can be applied to extend the domain-specific basis
set approach to aromatic systems, where the original ap-
proach does not work. It was shown for aromatic systems
like naphthalene, anthracene, and tetracene and conjugated
hydrocarbon chains like C20H2, C20H22, and p-quaterphenyle
that the localization procedure works sufficiently well. The
accuracy of the incremental RI-MP2 correlation energies is
close to a chemical accuracy of 1 kcal/mol for these difficult
systems, if appropriate truncation parameters are used.
Furthermore, it has been demonstrated that increasing the
domain sizes or increasing tmain systematically improves the
accuracy of the calculation. In the future, we plan to combine
the template localization with the CCSD(T) implementation
of the incremental scheme, to obtain a generally applicable
systematically improvable and efficient incremental CCSD(T)
method.
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Abstract: We present a QM/QM approach for the calculation of solvent screening effects on
excitation-energy transfer (EET) couplings. The method employs a subsystem time-dependent
density-functional theory formalism [J. Chem. Phys. 2007, 126, 134116] and explicitly includes
solvent excited states to account for the environmental response. It is investigated how the
efficiency of these calculations can be enhanced in order to treat systems with very large solvation
shells while fully including the environmental response. In particular, we introduce a criterion to
select solvent excited states according to their approximate contribution weight to the
environmental polarization. As a model system, we investigate the perylene diimide dimer in a
water cluster in comparison to a recent polarizable QM/MM method for EET couplings in the
condensed phase [J. Chem. Theory Comput. 2009, 5, 1838]. A good overall agreement in the
description of the solvent screening is found. Deviations can be observed for the effect of the
closest water molecules, whereas the screening introduced by outer solvation shells is very
similar in both methods. Our results can thus be helpful to determine at which distance from a
chromophore environmental response effects may safely be approximated by classical models.

1. Introduction
One of the fundamental steps in the primary events of
photosynthesis is the transfer of excitation energy from a
light-absorbing unit to a photosynthetic reaction center.1 In
the simplest case, this excitation-energy transfer (EET),
which is a nonradiative process, involves the de-excitation
of one chromophore (donor) together with the excitation of
another pigment (acceptor).2 The main mechanism for this
transfer is a Coulomb interaction between the transition

densities of the two electronic transitions on the donor and
acceptor, which for long distances can be described in terms
of a transition-dipole interaction (Förster dipole coupling).3,4

Other mechanisms can play a role in short separations of
the donor and acceptor if there is considerable overlap of
the monomer wave functions.5,6 EET is an important effect
not only in natural photosynthesis but also in artificial
photosynthetic systems and optoelectronic devices.

While EET is a dynamic phenomenon, one of the essential
ingredients in calculations of EET rate constants is the
electronic coupling between the donor and acceptor transi-
tion, which is related to the energy difference between the
coupled stationary electronic states (“excitonic states”) of
the two chromophores. Consequently, much effort has been
spent on the accurate calculation of transition densities of

* Corresponding author e-mail: j.neugebauer@chem.leidenuniv.
nl.

† Leiden University.
‡ University of Toronto.
§ Universitat de Girona.
|Università di Pisa.
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pigment molecules involved in EET and their electronic
couplings (“excitonic couplings”) during the past 10 to 15
years.7–22 One of the open problems for a realistic description
of excitation energy transfer rates is the inclusion of solvent
effects, which is often just estimated on the basis of the
dielectric constant of the environment. The screening of the
Coulomb coupling by the solvent (or a general environment)
can lead to considerable variations in the EET rates,
especially for couplings at short and medium ranges.11,14,23–27

Recent investigations have addressed the possibilities of
describing solvent screening effects on EET including more
and more details of the environment. The approach presented
in ref 14 is based on the polarizable continuum model
(PCM)28 and is able to consider the influence of the shape
of the pigment molecules on the EET screening by the
solvent. In contrast to this, the simple Förster approximation
for the screening factor of EET rates considers a screening
of point dipoles embedded in a dielectric continuum, which
leads to problems at short range.

In ref 27, a polarizable QM/MM approach in combination
with an ensemble averaging was developed for the simulation
of solvent screening effects. It could be shown that, for
homogeneous media, QM/MM and PCM results for the
environmental screening are very similar. However, for
heterogeneous media as present in proteins, QM/MM meth-
ods are expected to be more reliable, since they can model
the environment in atomistic detail. While this is a clear
advantage of the polarizable QM/MM approach, it requires
a careful parametrization of the MM part. Furthermore, at
very short range, the representation of the electrostatic effect
of the environment in terms of point charges and induced
dipoles as used in many QM/MM approaches may limit the
overall accuracy of the calculation (cf. the benchmark study
on protein effects on electronic spectra in ref 29). For certain
specific effects, it may be necessary to include the relevant
parts of the environment in the QM part of the calculation;
examples addressing effects of hydrogen bonding, axial
ligation, and effects of nearby charged residues on the
absorption bands of bacteriochlorophyll molecules in a
photosynthetic light-harvesting complex are given in refs 17
and 30. It should be noted that a direct assessment of such
specific effects on the basis of experimental data is rather
involved; for an example, see ref 31.

QM/MM approaches can be tested by comparing them to
fully quantum chemical approaches. The study in ref 27
employed supermolecular quantum chemical calculations for
this purpose, in which both interacting chromophores and
the surrounding solvent were treated with configuration
interaction singles (CIS). A very good agreement for both
types of calculations was reported. However, supermolecular
reference calculations are very demanding in terms of
computer time and pose additional complications. In par-
ticular, for nonhybrid density functionals, many artificially
low-lying charge-transfer excitations occur for solvated
systems32 due to the incorrect description of charge-transfer
excitations when using exchange-correlation kernels obtained
within the adiabatic local density approximation (ALDA) or
the adiabatic generalized gradient approximation (AGGA).33–40

This further increases the computational effort and hampers

the identification of the excitonic states, which is a prereq-
uisite for extracting excitonic coupling constants from
supermolecular calculations.

An alternative for the calculation of excitonic couplings
from a purely quantum chemical approach is provided by
subsystem methods within density functional theory. A
subsystem formulation of density functional theory (DFT)
was developed by Cortona in 199141 in the context of atomic
subsystems in crystals (see also the earlier work by Senatore
and Subbaswamy42). Subsequently, Wesolowski and Warshel
proposed the so-called frozen-density embedding (FDE)
method,43 which can be regarded as a simplified and efficient
subsystem method, in which only the electron density of an
active part is optimized. The freeze-and-thaw method
presented in ref 44 allows for a continuous transition between
both extremes (fully frozen or fully relaxed environment) in
the case of a partitioning into two subsystems, the active
part and an environment. A fully relaxed subsystem DFT
treatment involving many molecular subsystems was pre-
sented in ref 45, and a general setup allowing for different
relaxation strategies of different subsystems is available46

in the Amsterdam Density Functional program.47,48

An extension of the FDE method to excited states in terms
of time-dependent DFT (TDDFT) was presented by Casida
and Wesolowski.49 On the basis of this work, a generalized
subsystem TDDFT or coupled FDE-TDDFT (FDEc) ap-
proach was formulated by one of the present authors in refs
50 and 51, and efficient algorithms for calculating excitonic
couplings for large aggregates of pigments were developed.17,50

While the initial studies considered environmental effects
only in terms of an effective embedding potential,17,50 first
applications that include solvent screening effects on exciton
splittings of small models were presented in ref 52.

Here, we are going to investigate solvent screening effects
in subsystem TDDFT in more detail and discuss possible
strategies for the efficient solution of the computational
problems involved. As a test system, we employ the intense
low-lying πf π* transition of the solvated perylene diimide
(PDI) dimer, which was investigated in ref 27.

2. Theory

The FDEc approach presented in refs 17 and 50 allows
calculations of the excitation energies of a system composed
of several molecules in two steps. First, the uncoupled FDE
(FDEu) excitation energies are calculated; i.e., local excita-
tions of all constituent molecules are obtained, embedded
in an environment formed by all other molecules. These
calculations employ the ground-state FDE embedding for-
malism as proposed by Wesolowski and Warshel,43 in which
the environmental density is obtained as a sum of all other
molecules’ densities. To obtain optimum subsystem densities,
we iteratively apply freeze-and-thaw cycles44 to all sub-
systems, so that effectively a variational subsystem density
functional theory treatment is performed.41,45,53 Local excited
states are then obtained for all subsystems with the ap-
proximate form54 of the FDE generalization to excited
states49 that restricts the response to the active subsystem
only. In a second step, delocalized excited states of the entire
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aggregate are calculated by coupling these local excitations
following the subsystem TDDFT formalism presented in ref
17.

The main question that arises in approximate applications
of the subsystem TDDFT formalism is the selection of states
to be coupled. A direct connection to exciton coupling
models can be made if only the relevant local excited states
of the chromophores are coupled. These states will be called
“reference states” in the following. In the present work, this
would correspond to the intense low-lying πf π* excitation
of the perylene diimide molecules. In ref 50, it was tested
how the inclusion of additional excited states of the pigment
molecules influences both the vertical excitation energies of
the full system and the excitonic splitting between the
reference states. A typical criterion that was used in the
original implementation to determine states that have to be
included50 was the energy difference between a particular
excited state and the reference states, since high-lying excited
states only have a minor effect on the excitonic states. When
modeling solvent effects, however, the situation is somewhat
more complicated. The solvent screening can, in a linear-
response TDDFT framework, be understood as a cumulative
effect caused by many excited states of the solvent system.
Consequently, a very large number of excited states would
have to be included, which considerably increases the effort
for FDEc calculations.

In order to achieve a reasonable representation of the
solvent response, we have adopted the following strategy:
We first determine how many excited states are necessary
to represent the (isotropic) polarizability of a solvent
molecule to a good accuracy in terms of the sum-over-states
(SOS) expression (Hartree atomic units are used throughout)

where the sum runs over all excited states ν with excitation
energies ων and transition dipole moments µ0ν of the solvent
molecule. Once these excitations are calculated for all
(embedded) solvent molecules, they are sorted according to
their contribution to the SOS polarizability expression in
descending order. From this list of states, we choose the first
k states, where the number k is determined in such a way
that the cumulative contribution of these states is larger than
a preselected threshold percentage p of the full SOS
polarizability (obtained when including all precalculated
excited states). Figure 1 shows the results for a water
molecule (PBE/TZP) in the static limit. In this calculation,
all singlet-singlet excitations within the TZP basis set have
been calculated (130 in total). The dashed curve shows the
cumulative polarizability contribution for the excited states
when ordered by energy. This is a straightforward choice,
since excited states are usually calculated with Davidson-
type subspace iteration methods, which yield the lowest-
energy transitions.55,56 The solid line shows the results
obtained if the excited states are ordered by their contribution
to R. About 90 states are needed to arrive at the converged
isotropic polarizability value when the states are ordered by
energy, whereas a similar convergence is already reached

with 60 states if the states are sorted by increasing contribu-
tion to R. The horizontal line in Figure 1 indicates a 95%
threshold of the polarizability. As will be shown below, this
is typically sufficient for the calculation of screening effects
on excitonic couplings. It can be seen that this threshold is
reached with 53 states in the energy-sorted curve, whereas
only 27 states are needed from the list ordered by polariz-
ability contributions. This shows that a fairly small number
of excited states may be sufficient to reproduce the polar-
izability of a water molecule. Nevertheless, the total number
of coupled states increases tremendously when considering
the solvent response. Another approximation that can be
introduced is thus that solvent excited states are only coupled
to the dye molecules’ excited states, whereas intersolvent
couplings are neglected. This approximation will be tested
in section 4.

As discussed in refs 17 and 52, the elements of the matrix
Ω̃, which describe the couplings between transitions on
different subsystems, are calculated as

Here, F(ia)AµA is the solution factor describing the local
excitation µA in subsystem A, φiA and φaA are occupied and
virtual, respectively, orbitals in subsystem A, and ω(ai)A is
their orbital energy difference; δVA,νB

ind is the potential that is
induced in system A by the local electronic transition νB of
system B. The transition density of transition νB enters the
induced potential, while the sum over the orbital products
F(ia)AµA(ω(ai)A)1/2φiAφaA can be identified with the transition
density of transition µA. In principle, Ω̃µAνB should be
symmetric, since only local response kernels are employed
to calculate δVA,νB

ind . In practice, however, two different kinds
of approximations are introduced that can make Ω̃ nonsym-
metric: The induced potential is constructed on the basis of
a fitted transition density,50,57 and the integration in eq 2 is
performed in ADF by numerical integration.

R(ω) ) 2
3 ∑

ν

ων

ων
2 - ω2|µ0ν|

2 (1)

Figure 1. Cumulative contribution to the isotropic SOS
polarizability of water (PBE/TZP, optimized structure, static
limit) as a function of the number of excited states. Shown
are results for contributions ordered according to the energy
of the excited state (dashed line) and according to the
contribution to the polarizability (solid line). The horizontal line
represents a 95% threshold to the total polarizability.

Ω̃µAνB
) ∫ dr1 ∑

(ia)A

2F(ia)AµA√ω(ai)A
φiA

(r1)δVA,νB

ind (r1)φaA
(r1)

(2)
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The strategy introduced in refs 17 and 50 was to consider
one of the subsystems (A) as the “active” subsystem and to
evaluate its transition density exactly (but numerically). The
other system is treated as the environmental system (B), and
its transition density is fitted. In the current study, it is
computationally advantageous to perform the numerical
integration step for the smaller subsystems, i.e., the solvent
molecules. We will refer to this as a “transpose construction”
of Ω̃.

In the FDEc calculations involving solvent response, no
direct solvent contribution to the coupling can be calculated.
The reason is that in the FDEc treatment the solvent response
explicitly appears in the TDDFT eigenvalue problem in terms
of solvent excited states, whereas it is contained implicitly
in the interchromophore couplings in the QM/MMpol scheme
and the PCM model. In order to extract excitonic coupling
constants V from the FDEc calculations under the influence
of the solvent response, we therefore use the expression
derived from a secular determinant for Frenkel excitons of
two-level chromophores,10 as has been used in ref 27 to
extract coupling constants from supermolecular calculations:

where ωD, A are the local excitation energies of the donor
and acceptor, respectively, and ω+,- are the energies of the
upper and lower, respectively, excitonic state.

3. Computational Details

All subsystem (TD)DFT calculations have been performed
with a modified version17,50 of the ADF 2008 program.47,48

Supermolecular reference calculations and calculations on
isolated molecules were carried out with the RESPONSE
module of ADF.57 We use the Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional; for the LDA part,
the Perdew-Wang (PW92) parametrization was employed,
which corresponds to the default in the ADF 2009 version
but is at variance with the ADF 2008 defaults. The TZP basis
set from the ADF basis set library has been used for all ADF
calculations. For the nonadditive kinetic energy contribution
in subsystem DFT calculations, the so-called GGA97 gen-
eralized-gradient approximation (GGA) to the kinetic-energy

functional was employed.58 It has the same functional form
for the enhancement factor F(s) as the exchange functional
of Perdew and Wang59 and is therefore often denoted as
PW91k. It was parametrized for the kinetic energy by
Lembarki and Chermette.60 For all (subsystem) TDDFT
calculations, we applied the adiabatic local density ap-
proximation for the exchange-correlation kernel. In the case
of subsystem TDDFT, also the kinetic-energy component
of the kernel is approximated by the local-density (Thomas-
Fermi) approximation.

QM/MM calculations with a polarizable force-field, de-
noted as QM/MMpol in the following, have been performed
as described in ref 27 with a locally modified version of the
Gaussian 03 package.61 All QM/MMpol calculations em-
ployed the PBE exchange-correlation functional and a cc-
pVTZ basis set.62 The parametrization of the force-field part
was adopted from ref 27 and consists of a set of distributed
atomic polarizabilities calculated using the LoProp ap-
proach63 combined with ESP charges fitted to the electrostatic
potential, both obtained at the B3LYP/aug-cc-pVTZ level.

Test calculations on a PDI monomer resulted in excitation
energies of 2.134 (PBE/TZP) and 2.145 eV (PBE/cc-pVTZ).
The corresponding oscillator strengths are 0.548 (PBE/TZP)
and 0.542 (PBE/cc-pVTZ). Excitonic splitting energies for
the low-lying πfπ* transitions based on supermolecular
calculations were obtained as 0.0914 eV (PBE/TZP) and
0.0900 eV (PBE/cc-pVTZ). This shows that the results from
the calculations with Slater-(TZP) and Gaussian-type (cc-
pVTZ) basis sets are in very good agreement.

Graphics of the molecular structures were generated with
the program VMD.64

4. Coupled Response of Solvated Dimers

The structure of the perylene diimide dimer investigated here
is shown in Figure 2. It is the same structure investigated in
ref 27 (intermolecular distance: 7 Å). Solvation shells with
radii between 7 and 11 Å around the center of the pigment
dimer have been considered in the initial tests to investigate
the screening effect, while for the comparison with the QM/
MMpol approach, extended solvation shells with up to 15
Å cutoffs (>1400 atoms in total) have been employed.

Figure 2. Structure of the (solvated) PDI dimer from ref 27. Left, isolated dimer; middle, 7 Å solvation shell; right, 15 Å solvation
shell.

V ) 1
2√(ω+ - ω-)2 - (ωD - ωA)2 (3)
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As a first test of the subsystem methodology to describe
EET couplings, we calculated the excitation energies of the
PDI dimer without the water environment in a supermolecu-
lar and a subsystem TDDFT calculation. The results are
compared in Table 1. The FDEu data hardly differ from those
of the isolated monomer calculations, as expected, because
of the rather large distance of 7 Å between the monomers.
The FDEc calculations lead to the expected splitting and
reproduce the splitting energy of the supermolecular calcula-
tion very well (734 compared to 737 cm-1). Also, the energy
of the intense upper excitonic state from FDEc agrees nicely
with the supermolecular results; the oscillator strength is,
however, somewhat overestimated. A possible reason could
be a basis set superposition effect in the supermolecular
calculation (cf. the discussion of such effects in ref 51).

We now consider the smallest solvated system (7 Å
solvation shell) to test the necessary approximations for the
inclusion of the solvent response. In all calculations, 10
excited states per PDI molecule are included. Table 2
contains the results for different thresholds (percentages of
the total SOS polarizability) for the cumulative polarizability
contribution. The resulting splitting energies are also shown
in Figure 3. The uncoupled FDE calculation leads to a small
splitting between the two monomer transitions due to slightly
different local environments in this snapshot. If the coupling
between the PDI monomers is included in the calculation,

but no solvent response is taken into account, a splitting of
725 cm-1 is observed. Including more and more environ-
mental states first increases the energy gap to 744 cm-1 if
20% of the polarizability is reproduced and then decreases
it to a final value of 697 cm-1 if all environmental states
are included. If 95% of the polarizability is reproduced by
the coupled states, the splitting energy is converged within
5 cm-1 (0.7%). This threshold will be used in all subsequent
calculations.

A supermolecular calculation on this system resulted in a
somewhat smaller splitting energy of 644 cm-1. This
discrepancy is not very large on an absolute scale. But there
is a more pronounced difference in the results from FDEc
and from the supermolecular calculation for the change in
the splitting energy from the isolated PDI dimer to the
solvated system studied here: In the FDEc case, the splitting
reduces from 734 to 697 cm-1, whereas in the supermo-
lecular case, it decreases from 737 to 644 cm-1. It should
be noted, however, that the identification of the lower
excitonic state in the supermolecular calculation is not
entirely unambiguous. Many additional excited states appear,
several of which are of the intermolecular charge-transfer
type and thus significantly underestimated in our calculations
(see the related problem in ref 32). Such difficulties do not
appear in the absence of solvent molecules. Although an
assignment can be made on the basis of the dominant orbital
transitions, these orbital transitions also mix with other
excitations for the PDI dimer, which are slightly lower in
energy and would thus increase the splitting energy in the
solvated case. Other reasons could be the monomer basis
sets used to expand the (response) densities of the subsystems
in the FDEc calculations. These basis sets are thus the same
in the solvated and nonsolvated case, whereas the excitonic
states in the supermolecular calculation benefit from the
presence of basis functions at the solvent molecules. Also,
the different accuracy of the available approximations for
the kinetic-energy potential and kernel for different interac-
tion strengths could play a role. These approximations will
work better the smaller the subsystem density overlap is.65,66

The PDI monomers in the isolated dimer are well separated,
but water molecules appear quite close to the dye molecules

Table 1. Excitation Energy (Eu, in units of eV) and
Oscillator Strength fu of the Upper Excitonic State and
Excitonic Splitting ∆E (in units of cm-1) for the Isolated
PDI Dimer with a Distance of 7 Å

Eu ∆E fu

iso, uncoupled 2.134 0 0.548
FDEu 2.133 0 0.550
FDEc 2.178 734 1.100
super, iso 2.174 737 0.956

Table 2. Excitation Energy (Eu, in units of eV) and
Oscillator Strength fu of the Upper Excitonic State and
Excitonic Splitting ∆E (in units of cm-1) for the PDI Dimer
for a 7 Å Solvation Shell with Different Thresholds p for the
Cumulative Polarizability Contributiona

p # states Eu ∆E fu

FDEu 2.118 11 0.543
0.000 20 2.161 725 1.079
0.100 42 2.160 735 1.071
0.200 63 2.159 744 1.063
0.300 89 2.157 734 1.048
0.400 117 2.155 728 1.032
0.500 146 2.154 725 1.021
0.600 179 2.152 718 1.009
0.700 226 2.150 710 0.997
0.800 294 2.149 707 0.984
0.900 461 2.147 704 0.971
0.950 654 2.145 702 0.964
0.990 1097 2.144 699 0.959
0.999 1561 2.144 698 0.957
all 2120 2.144 697 0.957
super 2.115 644 0.768

a Also shown is the number of states that have to be coupled.
FDEu denotes the uncoupled calculation; in the case of p ) 0.000,
only the 20 excited states calculated for the PDI molecules are
coupled.

Figure 3. Splitting energies between the two excitonic states
in the PDI dimer with a 7 Å solvation shell as a function of
the threshold p for the cumulative polarizability contribution
of the coupled states.
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in the solvated dimer, so that the accuracy of the kinetic-
energy contributions may be slightly worse in the solvated
case.

As a next step, we investigate the dependence of the
excitonic splitting on the size of the solvation shell. Table 3
contains the coupling constants calculated according to eq 3
for several different approximations. The column labeled
“nsc” refers to calculations with “no solvent couplings”; i.e.,
the response of the environment is neglected. Only the
environmental effect on the ground-state properties is taken
into account in terms of the FDE potential (apart from a small
modification of the exchange-correlation kernel, see ref 52
for details). As can be seen, there are only small effects on
the calculated coupling constants (<5 cm-1 compared to the
coupling of 367 cm-1 found for the isolated PDI dimer),
which means that there is hardly any effect of the environ-
mental potential on the transition densities of the monomers.
The additional data for cutoffs of 12 to 15 Å presented in
Figure 4 indicate a slight increase, so that the coupling
converges to 375 cm-1, still within 8 cm-1 of the isolated
dimer. In contrast to that, all other calculations predict a
decrease in the coupling constants with increasing cutoff for
the solvation shell. If only solute-solvent couplings are
included in addition to the solute-solute couplings, V
decreases by 52 cm-1 from 359 cm-1 (7 Å) to 307 cm-1

(11 Å). If a cumulative polarizability threshold of p ) 0.95
is applied, V decreases by 45 cm-1 from 351 cm-1 to 306
cm-1. This shows that the neglect of intersolvent couplings
leads to the same qualitative behavior, although the deviation
is larger for smaller solvation shells. As a reference, we also
carried out fully coupled calculations, in which all solvent
couplings are included. These calculations are still quite
demanding and have therefore only been carried out for
cutoffs up to 10 Å. The results show the same trend as the
p ) 0.95 values but are systematically shifted by about 3 to
6 cm-1.

Table 3 also shows the results obtained with a transpose
construction of Ω̃ as defined in section 2. It can be seen that
the deviation between the two different construction schemes
is very small (0 to 2 cm-1). Since the transpose construction
is a great computational advantage for the system studied
here, it was employed for the calculations presented in the
following.

A comparison of the EET couplings calculated with FDEc
(p ) 0.95) and the corresponding values obtained from the
QM/MMpol calculations is presented in Figure 4. For cutoffs
of 10 Å or larger, the splittings calculated with FDEc and
QM/MMpol run more or less parallel, with an offset of about
35 cm-1. For smaller cutoffs of the solvation shell, however,
the difference between the two curves decreases to 18 cm-1

(cutoff of 7 Å), and the two curves are not parallel anymore.
In other words, the effect of outer solvation shells is described
in the same way in FDEc and QM/MMpol calculations,
whereas there is a slight quantitative disagreement for the
nearest solvent molecules.

Interestingly, the QM/MMpol slight overestimation of the
FDEc couplings is similar to that found in ref 27, where
QM/MMpol was compared to full quantum chemical cal-
culations. Also in this work, supermolecular calculations
indicate smaller splittings. These findings suggest that short-
range nonelectrostatic interactions between the dyes and the
first solvation shell, neglected in the QM/MMpol scheme,
seem to slightly attenuate the electronic coupling.

5. Solvent Screening Factors

In the QM/MMpol approach presented in ref 27, the EET
couplings V are obtained as a sum of two terms:

where Vs is the Coulomb plus exchange-correlation interac-
tion of the transition densities FD, A

T of the solVated donor
(D) and acceptor (A) systems:

The last term is an overlap contribution that arises because
the interaction in ref 27 is treated as a perturbation of
separated systems A and D; it is usually very small.14 In the
present study, it never contributes more than 0.6 cm-1 to
the total coupling. The explicit solvent contribution Vexplicit

describes the interaction of systems A and D that is mediated
by the environment. To be more precise, it is calculated as

Table 3. Excitonic Coupling Constants (in units of cm-1)
for the PDI Dimer for Different Sizes of the Solvation Shell
(cutoffs in units of Å)a

cutoff nsc nisc p ) 0.95
p ) 0.95,

transp full QM/MMpol

7 363 359 351 353 348 371
8 362 345 335 337 332 360
9 366 335 328 328 322 359

10 363 319 315 315 310 349
11 365 307 306 306 341

a nsc, no solvent couplings; nisc, no inter-solvent couplings; p
refers to the cumulative polarizability threshold; full, all solvent
couplings fully included. The label “transp” refers to the transpose
construction of Ω̃.

Figure 4. Excitonic coupling constants for the PDI dimer with
increasing solvation shell cutoffs. Results are shown for FDEc
calculations neglecting any solvent couplings or employing a
cumulative polarizability threshold of p ) 0.95 as well as for
QM/MMpol calculations.

V ) Vs + Vexplicit (4)

Vs ) ∫ dr∫ dr′ FA
T(r′)( 1

|r - r′| + fxc(r, r′))FD
T(r) -

ω0 ∫ dr FA
T(r) FD

T(r) (5)
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the Coulomb interaction of the transition density FA
T with

the dipoles induced in the environment by FD
T,27

The induced dipoles µk
ind at positions rk are employed in the

QM/MMpol model to simulate the polarization of the
environment.

Solvent screening factors s can then be calculated as27

The main difference with respect to the FDEc approach
is that the transition densities employed in the calculation
of Vs, eq 5, are obtained for the solvated monomers including
an environmental response contribution. The explicit con-
tribution to the coupling thus reflects the differential solvent
polarization when the interaction between the monomers is
“switched on”.

In contrast to that, the FDEc couplings are calculated on
the basis of local transition densities of the subsystems that
neglect the environmental response contribution, and the
entire solvent response enters the calculation of the total EET
couplings. If we would calculate the solvent screening factor
as the ratio between the FDEc results without solvent
couplings and the fully coupled FDEc data, we would thus
employ a different definition of the solvent screening factor
(see below).

If we assume the Vs values from the QM/MMpol calcula-
tions, which we cannot directly access on the basis of the
FDEc approach, and combine them with the total couplings
V calculated from FDEc, we can determine the solvent
screening factors. This is done in Table 4. The values
obtained with the polarizability criterion p ) 0.95 have been
employed for that purpose. Also shown are the QM/MMpol
Vs values as well as the QM/MMpol solvent screening
factors. In both cases, the solvent screening decreases, and
the FDEc solvent screening factor is systematically lower
than the QM/MMpol result, as could be expected from the
coupling constants. Nevertheless, there is a fair agreement
between the two sets of calculations, and the trend is clearly
the same.

The above definition of the screening factor is consistent
with the factor assumed in Förster theory, which scales a
dipole-dipole interaction obtained from transition dipole
moments measured for the noninteracting dyes in solution.67

However, an alternative definition of the screening factor
that accounts for the entire solvent effect, and thus allows a
more in-depth comparison between the FDEc and QM/
MMpol methods, is given by the ratio

of the coupling constant of the solvated dimer, Vsolution,
divided by the coupling constant of the dimer in a vacuum,
Vvacuum (367 cm-1 for FDEc and 363 cm-1 for QM/MMpol).
Table 5 reports the results adopting this alternative solvent
screening factor s̃. Interestingly, the coupling constant for a
7 Å cutoff with the QM/MMpol method is larger in solution
than in the isolated dimer. The solvent screening factor s̃QM/

MMpol decreases by 12.6% from 1.02 (7 Å) to 0.89 (15 Å).
The FDEc solvent screening factor s̃FDEc shows a somewhat
stronger decrease of 17.9% from 0.96 to 0.79. Both sets of
screening factors are considerably larger than those obtained
with the original definition shown in Table 4.

6. Conclusion

In this work, we have demonstrated that it is possible to
include solvent screening effects into the calculation of
excitonic splittings and EET couplings in the subsystem
TDDFT formalism. Although the computational effort is
considerably increased compared to calculations for isolated
chromophores, several developments and approximations
have been presented that allow an enhancement of the
efficiency of the calculations. In particular, the number of
solvent excited states needed to reproduce the environmental
response effect could considerably be reduced by employing
a polarizability-related criterion to select the coupled states.
Furthermore, a transpose construction of the coupling matrix,
in which the numerical integration step of the matrix elements
is always carried out for the smaller subsystem, greatly
reduces the computer time necessary for the calculation. Both
procedures do not affect the magnitude of the calculated
coupling constants significantly, and deviations were always
within 6 cm-1 or 0.7 meV. This shows that the full response
of environmental systems with more than 1000 atoms can

Table 4. Excitonic Coupling Constants Vs (from QM/
MMpol; in units of cm-1) for the PDI Dimer and Solvent
Screening Factors sQM/MMpol and sFDEc as a Function of the
Cutoff Distance for the Solvent Shella

cutoff Vs sQM/MMpol sFDEc

7 391 0.95 0.90
8 406 0.89 0.83
9 432 0.83 0.76

10 437 0.80 0.72
11 446 0.76 0.69
12 458 0.73 0.66
13 465 0.72 0.64
14 470 0.70 0.63
15 472 0.69 0.61

a Note that the same Vs values have been employed for both
sets of solvent screening factors, since Vs is not directly available
from FDEc calculations.

Vexplicit ) -∑
k

(∫ dr FA
T(r)

(rk - r)

|rk - r|3)µk
ind(FD

T) (6)

s ) V
Vs

)
Vs + Vexplicit

Vs
(7)

Table 5. Solvent Screening Factors s̃ Calculated as the
Ratio of the Excitonic Coupling in the Solvent Shell and the
Coupling in a Vacuum for the PDI Dimer as a Function of
the Cutoff Distance for the Solvent Shell

cutoff s̃QM/MMpol s̃FDEc

7 1.02 0.96
8 0.99 0.92
9 0.99 0.89

10 0.96 0.86
11 0.94 0.83
12 0.93 0.82
13 0.92 0.81
14 0.91 0.80
15 0.89 0.79

s̃ )
Vsolution

Vvacuum
(8)
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be treated accurately and fully quantum mechanically with
the present approach. The results for the transpose construc-
tion also underline that the approximation of a symmetric
coupling matrix made in ref 50 is well justified. Additional
approximations can involve the neglect of intersolvent
couplings, although this leads to slightly larger deviations
from the fully coupled results.

FDEc and QM/MMpol agree rather well on the EET
couplings of the solvated systems, and on their dependence
on the size of the solvation shell. Discrepancies between the
two approaches are on the order of 20 to 35 cm-1 (6 to 10%).
In particular, the effect of outer solvent molecules is very
similar in both methods, whereas the deviations are a bit
larger for smaller solvation shells.

Since FDEc and QM/MMpol describe the solvent response
effects in different ways, it is not straightforward to calculate
screening constants for FDEc in the way defined in ref 27.
However, if the unscreened EET couplings are taken from
the QM/MMpol calculation, then FDEc leads to a similar
screening dependence on the cutoff radius of the solvation
shell as QM/MMpol, although the predicted FDEc screening
constants are somewhat smaller. This also holds for an
alternative definition of the solvent screening as the ratio
between the EET couplings in solution and in a vacuum,
which in general leads to larger solvent screening constants.

This study thus indicates that there are small differences
in the description of short-range electronic couplings between
the subsystem TDDFT (FDEc) approach and the polarizable
QM/MM approach. It also allows an estimation of the size
of the solvation shell in which these differences become
negligible. In the present example, it turned out that solvent
molecules beyond the 10 Å cutoff have roughly the same
effect in both approaches. Our work thus forms the basis
for multiscale approaches to model the screening effect of
general environmental systems on EET couplings that include
the possibility to control the error introduced by different
representations of different parts of the environment. This
will be increasingly important in simulations of energy-
transfer phenomena of protein-pigment complexes as oc-
curring in natural photosynthetic systems.
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(29) Söderhjelm, P.; Husberg, C.; Strambi, A.; Olivucci, M.; Ryde,
U. J. Chem. Theory Comput. 2009, 5, 649–658.

(30) He, Z.; Sundström, V.; Pullerits, T. J. Phys. Chem. B 2002,
106, 11606–11612.

(31) Timpmann, K.; Ellervee, A.; Pullerits, T.; Ruus, R.; Sund-
ström, V.; Freiberg, A. J. Phys. Chem. B 2001, 105, 8436–
8444.

(32) Neugebauer, J.; Louwerse, M. J.; Baerends, E. J.; Wesolowski,
T. A. J. Chem. Phys. 2005, 122, 094115.

1850 J. Chem. Theory Comput., Vol. 6, No. 6, 2010 Neugebauer et al.



(33) Dreuw, A.; Weisman, J. L.; Head-Gordon, M. J. Chem. Phys.
2003, 119, 2943–2946.

(34) Tozer, D. J. Chem. Phys. 2003, 119, 12697–12699.

(35) Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao,
K. J. Chem. Phys. 2004, 120, 8425–8433.

(36) Gritsenko, O.; Baerends, E. J. J. Chem. Phys. 2004, 121, 655–
660.

(37) Maitra, N. T. J. Chem. Phys. 2005, 122, 234104.

(38) Neugebauer, J.; Gritsenko, O.; Baerends, E. J. J. Chem. Phys.
2006, 124, 214102.

(39) Ziegler, T.; Seth, M.; Krykunov, M.; Autschbach, J. J. Chem.
Phys. 2008, 129, 184114.

(40) Autschbach, J. ChemPhysChem 2009, 10, 1757–1760.

(41) Cortona, P. Phys. ReV. B 1991, 44, 8454–8458.

(42) Senatore, G.; Subbaswamy, K. R. Phys. ReV. B 1986, 34,
5754–5757.

(43) Wesolowski, T. A.; Warshel, A. J. Phys. Chem. 1993, 97,
8050.

(44) Wesolowski, T. A.; Weber, J. Chem. Phys. Lett. 1996, 248,
71–76.

(45) Iannuzzi, M.; Kirchner, B.; Hutter, J. Chem. Phys. Lett. 2006,
421, 16–20.

(46) Jacob, C. R.; Visscher, L. J. Chem. Phys. 2008, 128, 155102.

(47) Amsterdam Density Functional program; Theoretical Chem-
istry, Vrije Universiteit: Amsterdam. URL: http://www.scm-
.com (access date: 01/17/2009).

(48) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; van
Gisbergen, S. J. A.; Fonseca Guerra, C.; Snijders, J. G.;
Ziegler, T. J. Comput. Chem. 2001, 22, 931–967.

(49) Casida, M. E.; Wesolowski, T. A. Int. J. Quantum Chem.
2004, 96, 577–588.

(50) Neugebauer, J. J. Chem. Phys. 2007, 126, 134116.

(51) Neugebauer, J. J. Chem. Phys. 2009, 131, 084104.

(52) Neugebauer, J. Phys. Reports 2010, 489, 1–87.

(53) Jacob, C. R.; Neugebauer, J.; Visscher, L. J. Comput. Chem.
2008, 29, 1011–1018.

(54) Wesolowski, T. A. J. Am. Chem. Soc. 2004, 126, 11444–
11445.

(55) Davidson, E. R. J. Comput. Phys. 1975, 17, 87–94.

(56) Murray, C. W.; Racine, S. C.; Davidson, E. R. J. Comput.
Phys. 1992, 103, 382–389.

(57) van Gisbergen, S. J. A.; Snijders, J. G.; Baerends, E. J.
Comput. Phys. Commun. 1999, 118, 119–138.

(58) Wesolowski, T. A. J. Chem. Phys. 1997, 106, 8516–8526.

(59) Perdew, J. P. In Electronic Structure of Solids; Ziesche, P.,
Eschrig, H., Eds.; Akademie Verlag: Berlin, 1991; p 11.

(60) Lembarki, A.; Chermette, H. Phys. ReV. A 1994, 50, 5328.

(61) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.;
Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,
M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Strat-
mann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,
C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.;
Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople,
J. A. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford,
CT, 2004.

(62) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007–1023.

(63) Gagliardi, L.; Lindh, R.; Karlström, G. J. Chem. Phys. 2004,
121, 4494–4500.

(64) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics
1996, 14.1, 33–38.

(65) Kiewisch, K.; Eickerling, G.; Reiher, M.; Neugebauer, J.
J. Chem. Phys. 2008, 128, 044114.

(66) Fux, S.; Kiewisch, K.; Jacob, C. R.; Neugebauer, J.; Reiher,
M. Chem. Phys. Lett. 2008, 461, 353–359.

(67) Knox, R. S.; van Amerongen, H. J. Phys. Chem. B 2002,
106, 5289–5293.

CT100138K

Subsystem TDDFT Approach J. Chem. Theory Comput., Vol. 6, No. 6, 2010 1851



Systematic Derivation of AMBER Force Field Parameters
Applicable to Zinc-Containing Systems

Fu Lin and Renxiao Wang*

State Key Laboratory of Bioorganic Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, Shanghai, People’s Republic of China

Received August 27, 2009

Abstract: Metal ions are indispensable for maintaining the structural stability and catalytic activity
of metalloproteins. Molecular modeling studies of such proteins with force fields, however, are
often hampered by the “missing parameter” problem. In this study, we have derived bond-
stretching and angle-bending parameters applicable to zinc-containing systems which are
compatible with the AMBER force field. A total of 18 model systems were used to mimic the
common coordination configurations observed in the complexes formed by zinc-containing
metalloproteins. The Hessian matrix of each model system computed at the B3LYP/6-
311++G(2d,2p) level was then analyzed by Seminario’s method to derive the desired force
constants. These parameters were validated extensively in structural optimizations and molecular
dynamics simulations of four selected model systems as well as one protein-ligand complex
formed by carbonic anhydrase II. The best performance was achieved by a bonded model in
combination with the atomic partial charges derived by the restrained electrostatic potential
method. After some minor optimizations, this model was also able to reproduce the vibrational
frequencies computed by quantum mechanics. This study provides a comprehensive set of
force field parameters applicable to a variety of zinc-containing molecular systems. In principle,
our approach can be applied to other molecular systems with missing force field parameters.

1. Introduction

Metalloproteins (or metalloproteinases) are a family of
proteolytic enzymes whose catalytic mechanism involves a
metal. The metal ion is an indispensable component for
maintaining their enzymatic catalysis as well as structural
stability.1 Many metalloproteins are zinc-dependent. The zinc
ion in such proteins often functions as a Lewis acid for the
stabilization of reactants/intermediates or the occurrence of
catalytic reactions. Although it is reported that zinc may
adopt other types of coordination geometries,2,3 it normally
adopts a tetrahedral coordination geometry, in which the zinc
ion is linked to the protein via three coordination bonds,
while the fourth position is occupied by a labile water
molecule or a bound ligand molecule. Matrix metallopro-
teinase (MMP), carbonic anhydrase (CA), alcohol dehydro-
genase (AD), zinc-finger proteins are some well-studied zinc-

containing (Zn-containing) proteins. They play an essential
role in the biosynthesis and metabolism of certain bioactive
peptides and are relevant to a variety of critical diseases,
including arthritis and cancer.4,5 For example, MMPs conduct
hydrolysis of the amide bonds on certain peptide substrates
with the conserved zinc ion in the catalytic site. It has been
demonstrated that MMPs regulate degradation of the extra-
cellular matrix and control of angiogenesis, and thus selective
inhibitors against MMPs may be used as promising antican-
cer therapies.6

Due to the important biological implications of Zn-
containing proteins, molecular modeling is often employed
to study the structures and functions of these proteins.
Although today’s computers are really powerful, modeling
Zn-containing proteins in solvent with high-level quantum
mechanics (QM) computations is still not quite possible.
Thus, molecular mechanics (MM) is still the dominant
approach for such tasks, although some combined QM/MM
models7-10 have been proposed as well. Unfortunately, most
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today’s force fields do not always have appropriate param-
eters for metal atoms, which has become a practical obstacle
for the molecular modeling studies of metalloproteins.

Researchers have developed various methods for tackling
this “missing parameter” problem regarding metal atoms, in
particular zinc. In general, there are three options: nonbonded,
semibonded, and bonded models. The nonbonded model
relies basically on electrostatic and van der Waals interactions
instead of covalent bonds to maintain the coordination
configuration of zinc ion during simulation.11 It is straight-
forward to incorporate a nonbonded model into an established
force field. However, such a model could be sensitive to the
choice of atomic charge models. Due to the long-range nature
of electrostatic forces, the zinc ion tends to get close to any
negatively charged amino acid residues. Consequently, the
zinc ion may have problems in retaining a low coordination
number or even escapes from the coordination center.12

Another problem with this type of models is that they cannot
take account for charge transfer and polarization effects very
well.13

Semibonded models were originally proposed by Pang et
al,14,15 which are interesting patches to the nonbonded
models. A semibonded model places four dummy atoms
around the zinc ion, which are covalently connected to the
zinc ion in a tetrahedral geometry. The zinc ion is assigned
only van der Waals parameters, and its +2e charge is evenly
distributed among the four dummy atoms. Interactions
between the dummy atoms and amino acid residues are then
computed using the conventional electrostatic interaction
term. Semibonded models are also relatively convenient to
be incorporated into an established force field. Compared to
the nonbonded models, they are more suitable for modeling
the tetrahedral coordination configuration of a Zn-containing
system. However, they basically share the same shortcomings
as nonbonded models; they are sensitive to the choice of
atomic charge models and cannot be applied to other tasks,
such as normal-mode analysis. How to properly set the
parameters for the connections between zinc and dummy
atoms is another matter of concern.

The bonded models16 treat the connections between zinc
and its ligands as covalent bonds. An obvious advantage of
such models is that they can preserve the tetrahedral
coordination configuration of zinc even in long-time simula-
tions. If necessary, they can also be applied to other possible
coordination configurations of zinc. A disadvantage of
bonded models is that it is not convenient to use them to
simulate the interconversions between different coordination
configurations, since connection tables are kept fixed during
simulation. Nevertheless, this is normally not a concern for
molecular modeling studies of Zn-containing proteins. So
far some researchers have derived force field parameters
applicable to Zn-containing systems for bonded models
through various approaches.17-24 A common practice is to
perform frequency analyses on Zn-containing model systems
by high-level quantum mechanics computations, and then
the diagonal elements in the resulting Hessian matrix are
taken as the desired force constants of the bonds or the angles
in which zinc is participated. This approach requires the
Hessian matrix to be given in internal coordinates, which is

relatively complicated. Besides, a problem observed with this
approach is that different settings of internal coordinates may
lead to different results.25

Seminario et al. proposed an alternative method25-29 by
which a force constant may be derived from a Hessian matrix
based on the Cartesian coordinates. This method retrieves
the 3 × 3 submatrices relevant to the atom pairs of interests
from a given Hessian matrix. Then, the force constant for
any internal coordinate (bond stretching, angle bending, and
torsional angle) can be derived from the eigenvalues and
eigenvectors of these submatrices after some mathematical
transformations. Results produced by this method are obvi-
ously independent of the choice of internal coordinates. In
their original study,25 Seminario et al. has applied this method
to some very simple molecules, such as water and nitrogen
dioxide. Later, Ryde et al.29 employed this method to derive
force field parameters which were used for the refinement
of crystal structures of metal-containing enzymes, such as
ferrochelatase and iron superoxide dismutase. Bautista et al.26

employed this method to derive force field parameters
applicable to polyalanine peptides. Collectively, these studies
have demonstrated the value of Seminario’s method. Ex-
panding the application of this method to more challenging
problems is certainly intriguing.

In our study, we adopted Seminario’s method to derive
force field parameters applicable to various Zn-containing
molecular complexes. These parameters, including equilib-
rium bond lengths and bond angles as well as force constants
of bond stretching and angle bending, are compatible with
the popular AMBER force field.30 These parameters were
validated on four simple Zn-containing model systems. Our
results indicate that application of these parameters to the
AMBER force field well reproduced the three-dimensional
structures and vibrational frequencies of these model systems.
These parameter were further applied to the molecular
dynamics simulations on one complex structure formed by
carbonic anhydrase II and produced encouraging results. We
expect that the parameters derived in our study are applicable
to the refinement of crystal and NMR structures of Zn-
containing metalloproteins and the molecular modeling
studies on the binding of such proteins to their ligand
molecules. Compared to other researchers’ previous studies,
our study provides a more comprehensive set of force field
parameters for a variety of Zn-containing complexes so that
they can be readily applied without additional adjustment
or optimization. More importantly, our study has demon-
strated a complete approach to the deduction and validation
of force field parameters with Seminario’s method. The
application of this approach is certainly not limited to Zn-
containing molecular systems.

2. Methods

In our study, a total of 18 molecular complexes were used
to mimic the typical situations in the binding of Zn-
containing proteins with their ligand molecules. Force field
parameters relevant to zinc were derived from the outcomes
of QM computations on these model systems with Semi-
nario’s method. The derived parameters were then evaluated
on four model systems to see if they could reproduce the
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three-dimensional structures and vibrational frequencies of
these model systems. They were also evaluated in molecular
dynamics (MD) simulations of one complex structure formed
by carbonic anhydrase II, a Zn-containing metalloprotein.
QM computations were performed by using the Gaussian
03 software.31 All of the other major computations, including
energy minimization, MD simulation, and frequency analysis
described in the following sections, were performed by using
the AMBER software (version 9)32 on a Linux cluster based
on Intel Xeon 5345 processors.

2.1. Selection of Zinc-Containing Model Systems
and QM Computations. The entire Protein Data Bank
(PDB)33 released by January 1, 2009, consisting of about
55 000 structures, was screened with an in-house computer
program to retrieve the Zn-containing metalloproteins of our
interests. Only the metalloproteins containing one zinc ion
inside the binding pocket and one bound small-molecule
ligand, i.e. Zn-containing protein-ligand complexes, were
considered during this process. In addition, the zinc ion must
be in contact with at least four nonhydrogen atoms within a
distance cutoff of 2.8 Å, among which at least one had to
be on the ligand molecule. Only crystal structures with
overall resolution equal to or better than 2.5 Å were
considered in order to impose a control on the quality of
these complex structures. The total number of the Zn-
containing protein-ligand complexes meeting the above
criteria was 1004.

A survey on these complex structures revealed that in most
cases the zinc ion was bound with three His residues on the
protein side, although Cys, Glu, and Asp residues were
observed in some cases. For the sake of convenience, we
used three imidazole molecules to mimic the side chains of
three His residues on the protein side. On the ligand side, a
variety of chemical moieties were found in direct bonding
with the zinc ion. Accordingly, a total of 12 small molecules
(M-1 to M-12 in Figure 1) were used as models in our study,
which covered the majority of such moieties identified in
our survey. Six additional model systems (M-13 to M-18 in
Figure 1) were considered to represent other mixed coordina-
tion centers, in which an acetic acid molecule was used to
mimic the side chain of an Asp/Glu residue and an meth-
anethiol molecule was used to mimic the side chain of a
Cys residue. In fact, M-1, M-9, and M-10 also can be
considered as mixed coordination centers. Therefore, the
outcomes of our study can be applied to the modeling of a
wider range of Zn-containing proteins.

QM computations were then performed on the 18 model
systems summarized in Figure 1. These model systems were
optimized by using the B3LYP method,34-38 a popular
density functional theory (DFT) method, with the 3-21G,
6-31+G(d, p), and then 6-311++G(2d, 2p) basis sets in a
stepwise manner. Finally, frequency analysis was performed
at the B3LYP/6-311++G (2d, 2p) level to confirm that the
optimized structure was a true energy minimum without any
imaginary frequency. The frequency analysis also produced
the necessary raw data required by the following step.

Figure 1. Eighteen Zn-containing model systems considered
in this study.
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2.2. Derivation of Zinc-Related Force Field Param-
eters. We aimed at deriving parameters for zinc that are
compatible with the AMBER force field. The potential
energy function used by AMBER is

The five terms in the above equation compute the energies
of bond stretching, angle bending, torsion angles and non-
bonded van der Waals and electrostatic interactions, respec-
tively. Detailed explanations on the parameters in the above
equation can be found elsewhere.30 Note that in the current
AMBER force field implemented in the AMBER software
package (version 9)32 only the van der Waals parameters of
nonbonded model for zinc are provided. In this study, we
derived bond-stretching and angle-bending parameters of
bonded model for zinc. The equilibrium length of each bond
and the equilibrium value of each bond angle in which zinc
participated were obtained directly from the three-dimen-
sional structures of the 18 model systems listed in Figure 1,
which were fully optimized with extensive QM computations.
The force constants of bond stretching and angle bending
were derived with the method proposed by Seminario et al.
A brief description of this method is given below for the
sake of readers. More details can be found in the original
reference.25

In order to derive the force constants of bond stretching
and angle bending required in eq 1, a Hessian matrix in
Cartesian coordinates was extracted from the outcomes of
frequency analysis of each model system:

Here, [k] denotes for the Hessian matrix of a system
composed of N atoms, [δx] denotes for the vector of the
displacements in Cartesian coordinates, and [δF] denotes for
the vector of resulting reaction forces. The full form of eq 2 is

According to the Seminario’s method, the bond-stretching
force constant of bond A-B can be derived from the Hessian
matrix as a 3 × 3 matrix, i.e. [kAB]:

The differential of force in eq 5, i.e., [δF], represents the
responding force on atom A due to a displacement in the
coordinates of atom B. Diagonalization of the [kAB] matrix
gives the eigenvalues λi

AB and the corresponding eigenvectors
υi

AB.

Here, kAB is the harmonic bond stretching force constant
for bond A-B; uAB is the normalized vector pointing from
atoms A to B. It should be noted that kAB ) 2Kr (Kr is the
force constant of bond stretching used in eq 1).

Similarly, the angle-bending force constant kθ for angle
∠ABC can be derived by considering the responding forces
on atoms A and C due to a displacement in the coordinates
of atom B:

Then, the angle-bending force constant can be derived as:

Here, dAB and dCB are the distances between atoms A-B
and C-B, respectively; uPA ) uN × uAB; uPC ) uCB × uN;
uN ) (uCB × uAB)/(|uCB × uAB|); uAB, uCB, λi

AB, λi
CB, υi

AB,
and υi

CB have similar meanings as in eq 6. Note that kθ )
2Kθ (Kθ is the angle-bending force constant in eq 1).

All of the 18 model systems summarized in Figure 1 were
processed, as described above, using in-house computer
programs. Note that, in principle, the harmonic force
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constants of torsion angles can also be obtained through a
similar procedure. However, the harmonic force constants
are not compatible with the Fourier form of the torsion
energy term in the current AMBER force field. Thus, we
did not attempt to derive parameters for torsion angles which
include zinc as one of the four component atoms. Neglecting
the contributions of such torsion angles is actually not a major
problem. After all, the bonded model was adopted in our
study for modeling Zn-containing systems. Due to the
symmetric tetrahedral geometry of the zinc coordination
center, chemical moieties in bonding with the zinc ion are
quite rigid and usually devoid of significant torsional
freedom.20

2.3. Validation of the Derived Parameters on Model
Systems. Selection of the Model Systems and Force Field
Models. Four model systems, which were referred to as
model systems I-IV (Figure 2), were selected out of the 18
typical Zn-containing model systems for validating the force
field parameters derived in our study. The ligand molecule
in model system I consists of a sulfonamide moiety, which
is normally believed to be deprotonated upon coordination
with zinc.37 This moiety is observed in many ligands bound
to Zn-containing proteins. For example, the core part of the
complex formed between carbonic anhydrase II and 5-dim-
ethylamino-naphtha-lene-1- sulfonamide (PDB entry 1OKL),
which was used as an example later in our study for
validation purposes, has exactly the same chemicals structure
as model system I. The ligand molecules in both model

systems II and III consist of a thiol moiety, another common
moiety for forming coordination bonds with zinc. This moiety
also mimics the side chain of a Cys residue. The difference
between model systems II and III was that the thiol moiety
in system II was sketched in the deprotonated form; while
the counterpart in system III was sketched in the neutral form.
Model system IV presents a mixed coordination center, in
which the three residues in bonding with zinc includes one
His and two Cys residues. The ligand molecule in this model
system is an acetic acid molecule in the deprotonated form.
It can be considered as an Asp or Glu residue as well. In
addition, model system IV bears an overall negative charge,
unlike the other three model systems (Figure 2).

The performance of five force field models, including both
bonded and nonbonded models (Table 1), were then evalu-
ated on all four model systems. For the three bonded models
(FF-1, FF-2, and FF-5), the force field parameters for zinc
derived in our study (Table 2) were applied. For the
nonbonded models (FF-3 and FF-4), parameters for the
residues on the protein side were taken from the AMBER
FF03 parameter set,39 while parameters for the ligand
molecule (-NHSO2CH3, -SCH3, HSCH3, and -O2CCH3)
were taken from the AMBER GAFF parameter set.40,41 The
van der Waals parameters for zinc in all five force field
models were set as: σ ) 1.10 Å and ε ) 0.0125 kcal/mol,
which were cited from Merz’s study.42

Since the choice of appropriate atomic charges, which are
required to compute electrostatic energies, is another common
argument in modeling Zn-containing systems, both the
bonded and nonbonded models were tested in combination
with two atomic partial charge schemes (Figure 3). The first
scheme employed the RESP method43 to derive atomic
partial charges on the entire molecular system, including zinc,
from the outcomes of QM computations at the B3LYP/6-
311++G(2d,2p) level. This task was conducted with the
RESP fitting protocol implemented in the AMBER program.
Note that all QM computations in our study were conducted
at the B3LYP/6-311++G(2d,2p) level. Thus, we did not
repeat our computations at the HF/6-31G(d) level, which are
typically supplied to the RESP method as inputs, to avoid
possible inconsistency at other aspects. This charge scheme
will be referred to as the “RESP charges” throughout this
article. In the second scheme, zinc was assigned a formal
charge of +2e. The atomic charges on the bonding residues
were taken from the “template charges” for His and Cys
residues in the AMBER FF03 parameter set. For the small-
molecule ligand, template atomic charges are not available
in the AMBER force field. Thus, atomic charges on the
ligand molecule (-NHSO2CH3, -SCH3, HSCH3, and
-O2CCH3) were also derived from the outcomes of QM
computations at the B3LYP/6-311++G(2d,2p) level by using
the RESP method. This scheme is in fact the standard
practice employed by most common users of the AMBER
program in the molecular modeling studies of metal-
containing systems, and it will be referred to as the “formal
charges” throughout this article.

Structural Optimizations on Model Systems. The five force
field models were applied to all four model systems first to
test how well they could reproduce the structures of these

Figure 2. Four model systems used for the validation of force
field parameters. The AMBER atom type of each atom is
labeled in lower cases.
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model systems preoptimized at the B3LYP/6-311++G(2d,2p)
level. On each model system, the structural optimization was
first started from the preoptimized structure by QM. To
further test the robustness of the given force field models,
the structural optimization was then repeated on an arbitrary
structure of the same model system, in which the coordinates
of every component atom were scrambled while the con-
nection table was retained (Figure 4). All of the structural
optimization computations were performed using the AM-
BER program. The Newton-Raphson method was applied
to energy minimization. The convergence criterion was set
to 10-8 kcal/(mol ·Å). The distance cutoff of nonbonded
interactions was set to 999 Å. In each case, the root-mean-
squared deviation (rmsd) of the resulting structure was
calculated by using the structure preoptimized by QM as the
reference. Only zinc and the four atoms in direct bonding
with zinc were considered in rmsd calculations.

Molecular Dynamics Simulations on Model Systems. The
five force field models were also applied to the molecular
dynamics (MD) simulations of all four model systems in
vacuum. All MD simulations were also conducted using the
AMBER program. In each case, the preoptimized structure
by QM was used as the starting structure for the following
MD simulation. In order to release the internal strain energies
of the entire system gradually, three rounds of restraint MD
simulations were carried out first: (1) a 50 ps long simulation
with restraints on nonhydrogen atoms (restraint harmonic
force constant ) 5.0 kcal/mol ·Å2); (2) a 50 ps long
simulation with restraints on nonhydrogen atoms (restraint
harmonic force constant ) 0.5 kcal/mol ·Å2); and then (3)
another 50 ps long simulation without any restraint. After
these preparations, the final production run lasted for 10 ns,
which was conducted in vacuum under a constant temper-
ature of 300 K. The distance cutoff of nonbonded interaction
was set to 999 Å. The periodic boundary condition was not
enabled during simulation. The time interval was set to 1 fs
during the entire simulation process, and the MD trajectory
was also recorded every 1 ps for subsequent analyses.

Since the force field parameters derived in our study may
be applied to the modeling of Zn-containing metalloproteins
in their physiological environment, the five force field models
(Table 1) were also applied to the MD simulations of all
four model systems in water. In each case, the preoptimized
structure by QM was soaked in a TIP3P water box44 with a
margin of 14 Å in each dimension. The entire system was

neutralized by adding an appropriate number of counterions,
and a three-step minimization was used to release internal
strain energies gradually. In each step, 5000 rounds of
minimization was performed with the restraint harmonic
force constant imposed on all nonhydrogen atoms set to
500.0, 10.0 kcal/mol ·Å2, and zero, respectively. The entire
system was then subjected to the same restraint MD
simulation routine as the one performed in vacuum described
in the previous paragraph. After all these preparative steps,
a production simulation of 10 ns long was performed under
constant temperature (T ) 300 K) and pressure (P ) 1 atm).
Temperature of the entire system was regulated by Langevin
thermostat45 with the collision frequency γ ) 2.0 ps-1, and
pressure of the system was controlled by Berendsen bar-
astat.46 The time interval was set to 1 fs. Periodic boundary
condition was enabled during simulation. The distance cutoff
for nonbonded interactions was 14 Å, and the particle mesh
Ewald (PME) method47 was used to compute long-range
interactions. The MD trajectory was also recorded every 1
ps for subsequent analyses.

2.4. Validation of the Derived Parameters on a
Carbonic Anhydrase II Complex. The force field param-
eters derived in our study were further validated on a
complex structure formed by carbonic anhydrase II and
5-dimethylamino-naphthalene-1-sulfonamide (Figure 5). The
complex structure was solved by Nair et al48 through X-ray
diffraction at a resolution of 2.10 Å (PDB entry: 1OKL). In
this complex structure, the zinc ion inside the binding pocket
is in coordination with three histidine residues (His90, His92,
and His115) and with a sulfonamide moiety on the ligand
molecule, a chemical configuration identical to model system
I. Consequently, the force field parameters derived from
model system I were applied in the following simulations.

Five separate MD simulations of this complex structure
were performed to test force field models FF-1 to FF-5,
respectively. To set up each simulation, the force field
parameters for carbonic anhydrase II were taken from the
AMBER FF03 parameter set, and those for the ligand
molecule were taken from the AMBER GAFF parameter set.
The van der Waals parameters for zinc were also set as: σ
) 1.10 Å and ε ) 0.0125 kcal/mol. Note that, for all five
force field models, the corresponding RESP charges or
formal charges indicated in Figure 3 were applied only to
the binding center, including the zinc ion, the imidazole
moieties on His90/His92/His115, and the entire ligand

Table 1. Reproduction of the Structures of Four Zn-Containing Model Systems by Five Different Force Field Models

rmsd (Å)a

force field model model system I model system II model system III model system IV

symbol
bonding
model

atomic
chargesb

in
vacuumc

in
vacuumd

in
waterd

in
vacuumc

in
vacuumd

in
waterd

in
vacuumc

in
vacuumd

in
waterd

in
vacuumc

in
vacuumd

in
waterd

FF-1 bonded RESP 0.053 0.053 0.054 0.107 0.107 0.090 0.079 0.076 0.071 0.216 0.205 0.159
FF-2 bonded formal 0.656 0.604 0.554 0.141 0.141 0.143 0.096 0.096 0.535 0.396 0.383 0.356
FF-3 nonbonded RESP 1.001 0.293 0.275 0.091 0.085 0.104 16.347 16.424 0.236 1.795 1.778 0.245
FF-4 nonbonded formal 0.255 0.255 0.240 0.266 0.265 0.267 0.231 0.231 0.237 0.358 0.336 0.287
FF-5e bonded RESP 0.054 0.053 0.056 0.107 0.107 0.090 0.083 0.076 0.071 0.218 0.207 0.161

a Rmsd values were computed by considering the coordinates of zinc and the four atoms in direct bonding with zinc. The structure
optimized at the B3LYP/6-311++G(2d, 2p) level was used as the reference. b See Figure 4. c Structural optimization started from an
arbitrary structure. d Structural optimization started from a structure preoptimized at the B3LYP/6-311++G(2d, 2p) level. e A variant based
on FF-1 which was specially optimized to better reproduce vibrational frequencies.
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molecule. The rest of the parts on the complex were assigned
the template charges from the AMBER FF03 parameter set.

This complex was soaked in a TIP3P water box with a
margin of 10 Å and was then neutralized by adding
counterions. The subsequent stepwise minimization and
restraint MD simulations were performed using the same
procedure and settings as the MD simulations on Zn-
containing model systems in water. After these preparative
steps, a production simulation of 10 ns long was performed
under a constant temperature (T ) 300 K) and a constant
pressure (P ) 1 atm). Temperature of the system was also
regulated by Langevin thermostat45 with the collision

frequency γ ) 2.0 ps-1, and pressure of the system was
controlled by Berendsen barastat.46 The time interval for MD
simulation was set to 2 fs. Periodic boundary condition was
enabled during simulation. The distance cutoff for nonbonded
interactions was 12 Å, and the PME method47 was used to
compute long-range interactions. In addition, the SHAKE
algorithm49 was applied to constrain all bonds involving
hydrogen atoms. The MD trajectory was also recorded every
1 ps for subsequent analyses.

An additional MD simulation was performed on the same
complex structure, in which the binding center was modeled
by the QM/MM method50 implemented in the AMBER
program. The semiempirical PM3 method51 was employed
to treat the zinc ion, His90/His92/His115, and the entire
ligand molecule. The SCF convergence was set to 10-8 kcal/
mol. The rest parts of the complex structure were still treated
with the AMBER force field using the FF03 parameter set.
The complex structure was also soaked in a TIP3P water
box with a margin of 10 Å and was then neutralized by
adding counterions. The entire system was subjected to the
same stepwise minimizations and preparative restraint MD
simulations as the other force field models. The final
production run lasted for 4 ns under a constant temperature
(T ) 300 K) and a constant pressure (P ) 1 atm). The time
interval for MD simulation was set to 2 fs. The MD trajectory
was recorded every 1 ps. All of the other major parameters/
settings were the same as those used in the simulations by
using other force field models.

2.5. Further Optimization on Derived Parameters
for Reproducing Vibrational Frequencies. Producing the
correct vibrational frequencies is also an important quality
of a good force field model. For each model system
illustrated in Figure 2, the vibrational frequencies computed
at the B3LYP/6-311++G(2d,2p) level were compared with
their counterparts given by AMBER with the FF-1 param-
eters in normal-mode analysis. These two sets of vibrational
frequencies actually fit very well for all four model systems
(Figure 6). Some obvious discrepancy was observed only at
the high-frequency end (frequency >3000 cm-1). The normal
modes given by QM computations on each model system
were visually examined in the graphical user interface of
the Gaussian 03 program to determine which were respon-
sible for the observed discrepancy in vibrational frequencies.
It turned out to be stretching of X-H bonds (X ) C, N, O,
or S). Accordingly, the bond-stretching force constants of
the X-H single bonds in FF-1 were further optimized to
better reproduce the vibrational frequencies of model systems
I-IV, and the outcomes were named as FF-5. All of the
other parameters in FF-5 were the same as those in FF-1.

The optimization was carried out through a genetic
algorithm (GA) procedure implemented in an in-house
computer program. The optimization was carried out on a
population of 500 chromosomes. Every chromosome was
composed of a certain number of genes, each of which was
encoded with the bond-stretching force constant of a
particular X-H bond (X ) C, N, or S). The initial value of
each gene was assigned the original value of the correspond-
ing force constant in FF-1 plus a random perturbation within
(20%. The fitness score of each chromosome was computed

Table 2. Bond-Stretching and Angle-Bending Parameters
Related to Zinc Derived from Four Zn-Containing Model
Systems

bond typea

stretching
force constant
kcal/(mol ·Å2)

equilibrium
bond length (Å)

Model System I
ZN-NB 56.0 2.07
ZN-n2 98.8 1.97

Model System II
ZN-NB 49.5 2.09
ZN-s 92.8 2.26

Model System III
ZN-NB 74.8 2.02
ZN-sh 33.2 2.48

Model System IV
ZN-NB 62.9 2.33
ZN-o 98.8 1.97
ZN-s 62.9 2.34

bond anglea

bending
force constant
kcal/(mol · rad2)

equilibrium
bond angle (°)

Model System I
NB-ZN-NB 31.1 105.5
NB-ZN-n2 35.7 113.0
ZN-NB-CR 46.6 126.4
ZN-NB-CV 48.7 126.6
ZN-n2-hn 37.6 118.5
ZN-n2-s6 67.0 112.4

Model System II
NB-ZN-NB 35.4 104.7
NB-ZN-s 27.6 113.8
ZN-NB-CR 49.4 126.2
ZN-NB-CV 49.4 127.0
ZN-s-c3 75.2 104.9

Model System III
NB-ZN-NB 31.5 111.5
ZN-NB-CR 48.9 126.8
ZN-NB-CV 49.8 126.8
NB- ZN-sh 27.5 107.3
ZN-sh-hs 32.0 100.3
ZN-sh-c3 65.7 110.6

Model System IV
CR-NB-ZN 43.2 123.21
CV-NB-ZN 43.9 129.78
NB-ZN-o 34.6 91.97
NB-ZN-s 32.7 97.52
o-ZN-s 26.3 113.89
s-ZN-s 21.6 129.12
c-o-ZN 60.7 119.82
c3-s-ZN 70.6 102.40

a The atom types used in this table are indicated in Figure 2.
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Figure 3. Atomic charges assigned on the four model systems when the RESP charge model was applied (left) or when a
formal charge of +2e was applied to zinc (right).
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Figure 4. Three-dimensional structures of model systems I-IV optimized at the B3LYP/6-311++G(2d, 2p) level (left), and the
corresponding arbitrarily sketched structures used for validation (right).
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as the rmsd between the vibration frequencies given by QM
computations and those given by the normal-mode analysis
in AMBER applying the force constants encoded in the given
chromosome. Thus, the smaller was its fitness score, the
better was the given chromosome. The entire population
undertook optimization in the steady-state mode52 for a total
of 50 000 GA rounds. At each round, two types of genetic
operations, including single-point mutation and crossover,
may occur at a probability of 30% and 70%, respectively.
The single-point mutation occurred randomly at a particular
gene on a given parent chromosome in which that gene was
altered randomly within (20% of its original value. The
single-point crossover occurred between two parent chro-
mosomes in which the two chromosomes exchanged their
genes starting from a random point. For both the mutation
and the crossover operations, the parent chromosomes were
selected using the roulette-wheel method,52 so that better
chromosomes had a greater chance to produce offsprings.
At each GA round, the newly generated chromosomes (one
or two) were compared with the worst chromosome in the
entire population. If the new one had better fitness scores,
then they would replace the worst chromosome in the
population; otherwise the population would remain as the
same to enter next GA round. The average fitness score of
the entire population was monitored along the entire GA
process. For all four model systems, the average fitness score
of the entire population actually reached convergence well
before 50 000 GA steps. After the GA process was com-
pleted, the force constants encoded in the best chromosome
were retrieved as the final parameters in FF-5.

To make comparison with other force field models, FF-5
was also applied to the structural optimizations and MD
simulations on model systems I-IV as well as the MD
simulations on the carbonic anhydrase II complex, using the
same settings described earlier in this manuscript.

3. Results and Discussion

3.1. Validation of Force Field Models on Four
Simple Model Systems. As described in the Methods
Section, all five force field models (FF-1 to FF-5) were
applied to the structural optimizations of model systems I-IV
(Figure 2) in both vacuum and water. The rmsd values
between the structures optimized by FF-1 to FF-5 and the
corresponding structures optimized at the B3LYP/6-
311++G(2d, 2p) level are summarized in Table 1. As one
example, the three-dimensional structures of model system I
optimized by these force field models in vacuum are
illustrated in Figure 7.

One can see that FF-1 (bonded model + RESP charges)
performed very well in reproducing the correct three-
dimensional structures of all four model systems, no matter
if the structural optimization was started from a preoptimized
structure or a ridiculous structure. The rmsd values of the
structures optimized by FF-1 are generally below 0.25 Å on
all four model systems. In contrast, the performance of FF-2
(bonded model + formal charges) was generally inferior to
that of FF-1. For example, FF-2 produced a relatively large
rmsd value in handling the structure of model system I in
both vacuum and water. This may be attributed to the strong
secondary electrostatic interactions between the zinc ion
(atomic charge ) +2.000e) and the two oxygen atoms
(atomic charge ) -0.705e) on the sulfonamide moiety on
the ligand molecule. Indeed, one can see in the structure
produced by FF-2 (Figure 7) that the zinc ion tends to get
closer to these two oxygen atoms and results in an obvious
distortion of the tetrahedral geometry of the coordination
center. Another disadvantage of FF-2 is that, unlike FF-1,
its performance is somewhat unpredictable; its performance
was not so good on model system I; whereas it was acceptable
on model system II. As for model system III, in which the
ligand molecule is in the neutral form, it produced reasonable
structures in vacuum but not in water.

As for the two nonbonded models, FF-4 (nonbonded model
+ formal charges) demonstrated a relatively robust perfor-
mance across all four model systems. The rmsd values of
the structures produced by FF-4 are generally between
0.2-0.4 Å no matter if the optimization was performed in
vacuum or water. This level of accuracy, however, is still
inferior to the one produced by FF-1. The performance of
FF-3 (nonbonded model + RESP charges) was not consistent
across four model systems; it produced reasonable structures
of model system II, whereas it had some obvious problems
in reproducing the structures of I, III, and IV in vacuum. In
particular, for model system III, in which the ligand molecule
is in the neutral form, the electrostatic interaction between
the zinc ion (charge ) +0.727e) and the sulfur atom (charge
) -0.178e) on the thiol group is not strong enough for
maintaining these two atoms in a bonding range. The
structure of this model system was basically disrupted upon
optimization with FF-3, resulting in a large rmsd value of
over 16 Å. These results suggest that nonbonded models,
which rely only on electrostatic and van der Waals interac-
tions for modeling the coordination configuration of zinc,
are less capable than bonded models. If a nonbonded model

Figure 5. Crystal structure of carbonic anhydrase II in
complex with 5-dimethylamino- naphtha-lene-1-sulfonamide
(PDB entry: 1OKL), which was used for the validation of force
field parameters in this study.
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is chosen for this purpose anyway, application of RESP
charges will not improve its performance.

The five force field models were also tested in extensive
MD simulations on the four Zn-containing model systems.
When the MD simulations were performed in vacuum, all
force field models except FF-3 were able to basically
maintain the stable structures of all four model systems (data
not shown). In the case of FF-3, the structures under
simulation went complete wrong rapidly (<20 ps). The rmsd
curves monitored along the entire MD trajectory produced
by FF-1 to FF-5 in explicit water are illustrated in Figure 8.
One can see clearly that both nonbonded models (FF-3 and
FF-4) were not able to maintain the stable structures of all
four model systems. Note that the oxygen atom in a TIP3P
water molecule carries a substantial amount of partial charge
(-0.834e). The water molecule thus acts as a strong
competitor for bonding with the zinc ion, which could be
challenging for nonbonded models for maintaining the
desired coordination configuration of zinc. Bonded models
have obvious advantages in this aspect. As revealed in Figure
8, the desired tetrahedral coordination configuration of zinc
was highly stable during the entire simulation by FF-1. As
for FF-2, the four model systems underwent some noticeable
structural fluctuations from time to time. This may also be
attributed to the exaggerated secondary electrostatic interac-

tions between the zinc ion and the water molecules due to
the formal charge assigned on the zinc ion (+2e).

The results observed in the structural optimizations and
the MD simulations of the four model systems are basically
consistent. They both indicate that the performance of bonded
models (FF-1 and FF-2) is superior to that of nonbonded
models (FF-3 and FF-4) in reproducing the desired coordina-
tion configuration of zinc. Note that the major difference
between FF-1 and FF-2 is whether to employ the RESP or
the formal charge model in the computation of electrostatic
interactions. The formal charge model assumes that a form
charge of +2e is localized on the zinc ion, and the rest of
the parts are not affected by it. In contrast, the charge carried
by the zinc ion is dispersed on the entire system according
to the RESP model, which better mimics the charge transfer
effect between zinc and the surrounding chemical moieties.
As indicated by our results, FF-1 is generally more accurate
and more robust than FF2. We thus conclude that FF-1
(bonded model + RESP charges) is the better choice for
modeling Zn-containing molecular systems.

3.2. MD Simulation of a Carbonic Anhydrase II
Complex in Explicit Solvent. Our force field parameters
are derived from some simple model systems. The really
meaningful application of these parameters will be the
modeling of the complexes formed by Zn-containing met-

Figure 6. Vibrational frequencies of four model systems computed at the B3LYP/6-311++G(2d, 2p) level (black), force field
model FF-1 (red), and the specially optimized force field model FF-5 (green). In each figure, the normal modes are sorted by
their vibrational frequencies computed by B3LYP as the x-axis.
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alloproteins. Thus, we have chosen a protein-ligand complex
formed by carbonic anhydrase II, a typical Zn-containing
enzyme with pharmaceutical implications, to further validate
all five force field models. In this complex structure, the zinc
ion inside the binding pocket is in coordination with three
histidine residues on the protein (His90, His92, and His115)
and a sulfonamide group on the ligand molecule, a chemical
configuration identical to model system I. In addition, an
interesting feature of this complex is that Glu102 is near the
coordination center (Figure 5), which is not in direct bonding
with the zinc ion (Zn-O distance ) 3.9 Å). This feature
makes the complex more challenging for simulation since
the negatively charged side chain of Glu102 could disrupt
the desired coordination configuration of the zinc ion inside
the binding pocket.

The five force field models were applied to the MD
simulations of this complex structure in explicit water. The
force field parameters derived from model system I were
applied to the simulations by the bonded models, i.e., FF-1,
FF-2, and FF-5. Rmsd values of the coordination center (the

zinc ion plus four atoms in direct coordination with it) were
monitored along each MD trajectory (Figure 9). One can
see that these three bonded models were able to maintain
the tetrahedral geometry of the coordination center very well
during the entire simulation. In particular, the average rmsd
values produced by FF-1 and FF-5 are as small as ∼0.4 Å.
The average rmsd values produced by FF-2 (∼0.7 Å) are
slightly larger than those of FF-1 and FF-5. In the last
snapshot on the MD trajectory of FF-2, the carboxyl group
on the side chain of Glu102 tends to get closer to the zinc
ion as compared to the structures produced by FF-1 and FF-
5. In fact, one of the oxygen atoms on that carboxyl group
is already in a bonding range with the zinc ion (Zn-O
distance ) 1.80 Å) in this structure. This observation further
proves that the significant formal charge assigned on the zinc
ion is not completely reasonable.

As for the two nonbonded models (FF-3 and FF-4),
relatively large rmsd values are observed on their MD
trajectories (Figure 9). One can see clearly in the structures
produced by FF-3 and FF-4 that the zinc ion has moved out

Figure 7. Three-dimensional structures of model system I optimized by FF-1 to FF-5 in vacuum based on a ridiculous initial
structure. These structures are superimposed with the one optimized at the B3LYP/6-311++G(2d, 2p) level (the structure in
yellow).
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Figure 8. Rmsd values monitored along the MD trajectories produced by five force field models in explicit water. In each case,
the rmsd values are computed by considering only the coordination center, while the structure optimized at the B3LYP/6-
311++G(2d, 2p) level is used as the reference.
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Figure 9. Rmsd values of the coordination center on a carbonic anhydrase II complex structure monitored along each MD
trajectory (left), and the last snapshot retrieved from each MD trajectory (right) produced by six different methods.
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the coordination center and is now close to the carboxyl
group on the side chain of Glu102. Consequently, the
tetrahedral geometry of the coordination center is disrupted
considerably. It seems that the complex structure under
simulation has not reached equilibrium at 10 ns, and it would
undergo even more significant changes if the simulation was
extended. The potential problem of nonbonded models in
modeling Zn-containing protein-ligand complexes is clearly
demonstrated in this test.

Recently, Lim et al developed a nonbonded force field
model with a potential energy function, including terms for
charge transfer and polarization effects.13 They conducted
molecular dynamics simulations of Zn2+ bound to Cys and
His residues in proteins using both conventional force field
and their modified model. In their study, simulations with
the conventional force field yielded a nontetrahedral Cys2His2

Zn-binding configuration and significantly overestimated the
experimental Zn-S bond length. In contrast, simulations with
their new potential energy function better reproduced the
experimentally observed tetrahedral Cys2His2 and Cys4 Zn-
binding configurations. Lim’s study is another good example
for demonstrating the limitations of conventional force field
models in the simulation of Zn-containing molecular systems.
Some appropriate considerations on charge transfer and
polarization effect are thus desired if nonbonded force field
models are to be used to study such systems.

Nevertheless, in Lim’s study the charge transfer was
restricted between the zinc ion and the atoms in direct
bonding with it, and the amount of transferred charge needed
to be recomputed at each time step during simulation. More
importantly, adding a polarization term into an existing force
field model certainly requires careful reparameterizations and
validations. It can be fairly complicated especially when
diverse chemical structures have to be considered. In contrast,
our approach only needs to define a number of new bond
types and to supply the necessary parameters, which is
technically more practical. In this study, we have demon-
strated the application of this approach to a variety of ligand
molecules bound with zinc. It was also unclear in Lim’s study
if their new potential energy function could reproduce
vibrational frequencies, a more challenging goal for force
field models. As described later in this article, the force field
parameters derived in our study are capable for this purpose.

Besides force field models, the QM/MM method imple-
mented in the AMBER program was also applied in our study
to modeling of the same carbonic anhydrase II complex. We
found that the MD simulation by employing QM/MM was
about five times slower than the MD simulation by employ-
ing the AMBER force field. Thus, the MD simulation with
QM/MM was performed only for 4 ns due to the significant
computation cost. The tetrahedral geometry of the zinc
coordination center is basically maintained during this
simulation (Figure 9). It, however, undergoes a notable
distortion from the original crystal structure (rmsd ∼1.3 Å).
The same trend is also indicated by the rmsd values computed
considering the entire ligand molecule (see the Supporting
Information), where the structure produced by the QM/MM
simulation exhibits a greater change compared to those
produced by FF-1 and FF-5.

It is interesting to find that the force field parameters
derived in our study (FF-1/FF-5) outperformed the QM/MM
method in modeling this carbonic anhydrase complex. It
prompts that, although the concept of QM/MM is appealing,
this method is not automatically more accurate than a
conventional MM approach. The less encouraging perfor-
mance of QM/MM observed in our study may be attributed
to some technical reasons. For example, the QM computa-
tions in QM/MM actually employed the semiempirical PM3
method, which may not produce satisfactory results in this
particular case. There are also some other parameters which
may affect the final outcomes of the QM/MM method. An
optimal set of these parameters may lead to better outcomes.
Nevertheless, exploring the QM/MM method implemented
in the AMBER program is certainly beyond the scope of
this study.

3.3. Reproduction of the Vibrational Frequencies of
Zinc-Containing Model Systems. Besides three-dimensional
structures, producing the correct vibrational frequencies is
also a desired quality of a force field. The vibrational
frequencies of four model systems computed at the B3LYP/
6-311++G(2d, 2p) level and the force field models FF-1
and FF-5 are illustrated in Figure 6. One can see that,
although most vibrational frequencies produced by FF-1
match well with their counterparts produced by QM com-
putations, some notable discrepancies at the high-frequency
end (>3000 cm-1) still exist. As described in the Methods
Section, we found that stretching motions of the X-H bonds
(X ) C, N, or S) were largely responsible for this.
Consequently, the bond-stretching force constants of such
bonds in FF-1 were further optimized through a genetic
algorithm approach to better reproduce vibrational frequen-
cies. The resulting parameters, named as FF-5, are tabulated
in the Supporting Information together with the original ones
in FF-1 for all four model systems.

FF-5 was also applied to optimize the structures of all four
model systems. In each case, the structure preoptimized at
the B3LYP/6-311++G(2d,2p) level was used as the starting
structure, and the final optimized structure was subjected to
normal model analysis by using the AMBER program. The
vibrational frequencies computed thereby are compared with
those produced by QM computations in Figure 6. One can
see that FF-5 indeed reproduces the vibrational frequencies
at the high-frequency end very well on all four model
systems. This observation indicates that our method for
optimizing FF-1 is effective; the desired goal can be achieved
simply by adjusting the stretching force constants of the X-H
bonds within a reasonable range ((20%) of their original
values.

Thus, FF5 is more accurate than FF1 in terms of producing
correct vibrational frequencies. The only difference between
FF1 and FF5 lies in some bond-stretching force constants
of X-H bonds. Thus, it is not surprising that, as demon-
strated in all of our tests, FF1 and FF5 are equally capable
of reproducing the correct three-dimensional structures of
simple Zn-containing model systems as well as a Zn-
containing protein-ligand complex. In fact, accurate model-
ing of high-frequency vibrations is rarely a matter of concern
for modeling biological macromolecules. For example, the
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popular SHAKE approximation in the AMBER program
fixes the lengths of all X-H bonds during MD simulation
in order to reduce computational costs. Thus, one can safely
apply FF-1 instead to Zn-containing metalloproteins, saving
an extra amount of efforts on parameter optimization.

3.4. On the Derived Force Field Parameters. A notable
feature of our study is that we constructed a variety of Zn-
containing model systems and then applied Seminario’s
method to derive force field parameters for each of them.
As described in the Methods Section, an extensive survey
was performed on the entire PDB to identify common
chemical moieties in bonding with zinc, including acid,
ketone, sulfone, alcohol, thiol, amide, and amine groups. The
model systems summarized in Figure 1 are designed to mimic
the binding of these chemical groups with Zn-containing
proteins. Note that, for alcohol and thiol groups, both of their
neutral and deprotonated forms are considered (M5/M6, M7/
M8, and M9/M10) in order to explore the possible difference
in their bonding with zinc. In addition, six more model
systems (M-13 to M-18) are used to mimic some mixed zinc
coordination centers observed in Zn-containing proteins. The
complete list of the bond-stretching and angle-bending
parameters derived in our study for all 18 Zn-containing
model systems are summarized in the Supporting Informa-
tion. They are readily applicable to the molecular modeling
studies of Zn-containing proteins, either in bound or unbound
states, with the AMBER program.

We have observed in our results that the force field
parameters for the same type of bond or angle derived from
different model systems are not identical. Instead, they scatter
in a certain range. Since most model systems considered in
our study contain three imidazole moieties in binding with
zinc, we use the Zn-NB bond (NB is a nitrogen atom on
the imidazole ring, see Figure 2) here as an example to
illustrate this issue. Distributions of the parameters for the
Zn-NB bond derived on all model systems are given in
Figure 10. One can see that the equilibrium bond lengths of
the Zn-NB bond are between 2.00-2.18 Å, while the
corresponding stretching force constants are between 30-90
kcal/(mol ·Å2). In fact, different sets of these parameters are
also reported in literature. For example, the corresponding
data reported by Lu et al.19 were 2.27 Å and 26.0 kcal/
(mol ·Å2), the data reported by Tuccinardi et al.20 were 2.08
Å and 99.0 kcal/(mol ·Å2), and the data derived from the

Raman spectrum of [Zn(NH3)4]I2 crystals were 2.10 Å and
40.0 kcal/(mol ·Å2).19,53

In particular, one can see the parameters of the ZN-NB
bond shown in Figure 10 can be divided into two distinct
groups. The ZN-NB bond tends to be shorter (2.00-2.04
Å) and its stretching force constant is larger (60-90 kcal/
mol ·Å2) when the ligand molecule binding with zinc is in
its neutral form. In contrast, the ZN-NB bond tends to be
longer (2.04-2.18 Å) and its stretching force constant is
smaller (30-70 kcal/mol ·Å2) when the ligand molecule is
in its deprotonated form. This can be easily understood: when
the ligand is deprotonated, i.e., negatively charged, the
bonding between the zinc ion and the ligand is stronger and
is associated with a shorter bond length. Consequently, the
bonds between zinc and imidazole rings are weakened and
become slightly longer. This actually can be proven by
comparing the relevant bond-stretching parameters derived
from model systems II and III (Table 2). The Zn-S bond
between zinc and the -SH group is longer than the
counterpart between zinc andsS- by 0.22 Å, and it is much
weaker than the latter. Results derived from other model
systems in a neutral/deprotonated pair also reveal the same
trend (see the Supporting Information).

Our results, together with the previous results reported by
other researchers, suggest that zinc-related force field pa-
rameters are not always transferable across different systems.
As revealed in some previous studies,19,20 parameters orig-
inally derived from other model systems had to be optimized
on the specific system under study through trial-and-error
efforts; otherwise it could be risky. For this reason, we have
considered a variety of Zn-containing model systems and
produced a more comprehensive set of parameters. When
one wants to model a specific Zn-containing system, he/she
may choose and apply the appropriate force field parameters
derived from a corresponding model system, which will in
turn reduce the efforts on parameter optimization and produce
more accurate results. This is a noteworthy advantage of our
study as compared to previous studies.

Another noteworthy advantage of our study, which is
perhaps more important, is that we have demonstrated a
complete procedure for the deduction and validation of force
field parameters. We have chosen Seminario’s method for
deriving force field parameters from the outcomes of QM
computation, which has obvious technical advantages. First,

Figure 10. Distribution of the bonding stretching parameters for the Zn-NB bond derived from 18 typical Zn-containing model
systems. Columns in black and gray represent the parameters for model systems in which the ligands are neutral and
deprotonated, respectively.

Force Field Parameters in Zinc Systems J. Chem. Theory Comput., Vol. 6, No. 6, 2010 1867



it is based on a Hessian matrix in the Cartesian coordinates.
Thus, it avoids the troubles in setting internal coordinates
as seen in some previous studies.25 Second, the desired force
constants of multiple bonds and bond angles can be derived
simultaneously in one job rather than through an iterative
trial-and-error approach. Very little human inference is
needed during the whole process. In fact, once the Hessian
matrix of a given model system is available, the rest of the
steps can be largely automated by computer programs. Due
to this advantage, we were able to process a variety of model
systems and obtain the desired parameters. Application of
Seminario’s method is not limited to the 18 selected Zn-
containing systems considered in this study. The same
approach certainly can be employed to handle other Zn-
containing molecular systems whenever necessary. It, in
principle, can be applied to other types of metal ions or
uncommon chemical moieties lacking appropriate force field
parameters as well.

4. Conclusions

In this study, we have derived bond-stretching and angle-
bending parameters applicable to zinc-containing systems
through a systematic approach. A total of 18 Zn-containing
model systems were considered, and Seminario’s method was
applied to analyze the Hessian matrix of each model system
computed at the B3LYP/6-311++G(2d,2p) level to derive
the desired force constants. Then, the derived parameters
were validated extensively in structural optimization and
molecular dynamics simulations of four model systems as
well as one protein-ligand complex formed by carbonic
anhydrase II. With the application of these parameters, the
bonded model in combination with the RESP charges (FF-
1) was founded to be most robust in reproducing the three-
dimensional structures of these Zn-containing systems;
whereas the performance of nonbonded models was generally
inferior. The performance of FF-1 was even better than the
quantum mechanics/molecular mechanics (QM/MM) method
implemented in the AMBER program in the MD simulations
of a carbonic anhydrase II complex in explicit water. After
some necessary optimizations on the force constants of X-H
bonds, i.e., FF-5, it was also able to reproduce the vibrational
frequencies of each model system provided by QM computa-
tions. Thus, the force field parameters derived in our study
seem to be very reliable. Our approach, which is based on
Seminario’s method, has certain technical advantages. It can
derive the parameters for all relevant chemical bonds in one
batch rather than through an iterative procedure. Application
of this approach is certainly not limited to the Zn-containing
systems considered in this study. It is, in principle, applicable
to molecular systems containing other types of metal ions
or uncommon chemical moieties in which appropriate force
field parameters are currently not available.
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Abstract: We constructed an accurate polyether force field for implicit solvent (IS) molecular
dynamics (MD) simulations that matches local and global conformations of 1,2-dimethoxy-ethane
(DME) and polyethylene glycol (PEG), respectively. To make appropriate force field adjustments
for IS models of PEG, we used long-term MD simulation data of 1 µs in explicit solvent (ES)
based on the most recent CHARMM35 ether force field that includes adjustments for PEG in
explicit water. In IS models, competition of attractive van der Waals (vdW) interactions between
solute-solute and solute-solvent atom pairs is often not considered explicitly. As a consequence,
the attractive vdW interactions between solute atom pairs that remain in IS models explicitly
can yield equilibrium structures that are too compact. This behavior was observed in the present
study comparing MD simulation data of the DME and PEG ES model with corresponding IS
models that use generalized Born (GB) electrostatics combined with positive surface energy
terms favoring compact structures. To regain balance of attractive vdW interactions for IS models,
we considered the IS generalized Born with simple switching (GBSW) model in detail, where
we turned off surface energy terms and reduced attractive vdW interactions to 90%, or we used
alternatively even slightly negative surface energies. However, to obtain quantitatively the same
local and global distributions of PEG conformers as in ES, we needed additional force field
adjustments involving torsion potentials and 1-4 and 1-5 atom pair Coulomb interactions. This
CHARMM ether force field, specifically optimized for IS simulation conditions, is equally valid
for dimeric and polymeric ethylene glycol. To explore the conformational space of PEG with
MD simulations, an IS GBSW model requires 2 orders of magnitude less CPU time than the
corresponding ES model. About a factor of 5 of this gain in efficiency is due to the lack of solvent
viscosity in IS models.

Introduction

The behavior of molecules in solution depends fundamentally
on the balance between solute-solute, solute-solvent, and
solvent-solvent interactions. The type of solvent used
determines the solvation and association behavior of mol-
ecules as well as their protonation and redox states in the

case of titratable or redox-active molecules and their
conformations in the case of larger flexible molecules. The
native structure of biological macromolecules and in par-
ticular of proteins is governed by interactions with water.1,2

Biological macromolecules need to be under physiological
conditions (i.e., to be in aqueous solution at specific
temperatures, pH’s, and ionic strengths) to adopt their native
structure, which is a prerequisite to function appropriately.3-7

Binding strengths of drugs, substrates, and inhibitors to
proteins are strongly influenced by water.2,8-10 Also, con-
formational dynamics and the function of proteins is solvent
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controlled.11-13 On the other hand, the neighborhood of a
protein surface influences also the behavior of the surround-
ing water. It restricts conformational variability of water,
leading to reduced entropy,12,14,15 and slows down its
dynamics by about a factor of 2 to 4.16,17 Thus, modeling
and simulation of structure and dynamics of molecules and
their interactions in solutions generally requires the consid-
eration of interactions with solvent molecules in atomic
detail. This is why, in approaches using molecular dynamics
(MD) simulations, the considered molecules need to be
embedded sufficiently well in a solvent environment.

In conventional MD simulations of solute-water systems,
water molecules are described explicitly in atomic detail
employing an atom-based molecular force field. Such MD
simulations involve routinely a large number of atoms, where
most of them belong to solvent molecules. Even in the best
case, the computational costs of such molecular systems
increase faster than linearly with the number of atoms,
making MD simulations with explicit solvent (ES) models
rather expensive.

Different procedures have been applied to reduce the CPU
time required for MD simulations. One focus is to use
implicit solvent (IS) models for water,18-26 which diminish
the number of atoms to be considered enormously. An
additional efficiency bonus of IS models is the absence of
solvent viscosity. As a consequence, the actually used
elementary time step of MD simulations with an IS model
can in reality correspond to a larger time interval, as has
been found in IS generalized Born using molecular volume
(GBMV) MD simulations when a low friction constant was
used.27 This would allow exploration of the conformational
space of a solute molecule in less simulation time but bears
the disadvantage that the dynamics are unrealistically fast.
Water interacts with solute molecules in three ways: two
direct and one indirect type of interaction. The former two
are electrostatic28 and van der Waals (vdW) interactions;12

the latter is due to the hydrophobic effect.2,13,15,29-31 The
influence of hydrogen bonds (H-bonds) is generally ac-
counted for by a suitable combination of electrostatic and
vdW interactions.

Solvent modeled as explicit water screens Coulomb (and
also vdW) interactions between solute atoms and competes
with the direct solute-solute atom pair interactions (Coulomb
as well as vdW). In an IS model, the solute-solvent
electrostatic interactions is approximated using a dielectric
continuum with large dielectric constant for the solvent (ε
) 80 for water), while the solute atomic partial charges are
embedded in a dielectric cavity of a small dielectric constant
(generally ε ) 1). In a simplified approach, the electrostatic
boundary between a low and high dielectric medium in an
IS model can be approximated by the surface separating the
vdW solute volume (given by the merged volumes of solute
atoms) from the solvent, which is used by GBSW.32-34 More
elaborate procedures use the molecular surface as in
GBMV.35,36 In fast analytical continuum treatment of sol-
vation (FACTS),37 still another procedure to effectively
generate the interface between solute and solvent is used,
which is guided by the principle to save CPU time.

In dielectric continuum models, the solute atomic partial
charges interact with virtual surface charges induced at the
solute-solvent boundary. The corresponding electrostatic ener-
gies can be evaluated with the Poisson or for nonvanishing ionic
strength with the Poisson-Boltzmann equation.22,38,39 Since
solving the Poisson equation at each time step of MD
simulations slows down such simulations considerably, more
approximate electrostatic models are used instead. These are,
for instance, the generalized Born approximation (GB)40 or
even more simplifying approaches that use distance depend-
ent dielectric constants and neutralized charged groups.41-44

Although the continuum dielectric medium models explicit
electrostatic solute-solvent interactions generally faithfully,
it was occasionally observed that solute-solute H bonds and
salt bridges are too persistent in the IS model with GB.

In addition to the electrostatic energy contributions, IS
force fields contain a nonpolar energy term that accounts
for the entropic costs for water to be in contact with the
surface of a solute. In touch with the surface of a solute, a
water molecule can no longer adopt as many different
H-bond patterns as in bulk water. This goes along with a
loss of entropy of these water molecules, the so-called
hydrophobic effect. Consequently, water has positive contact
energy with solute molecules forcing different solute mol-
ecules to aggregate and individual solute molecules to assume
a compact conformation with a minimal surface. This nonpolar
contribution to solvation free energy is generally assumed to
be directly proportional to the solvent accessible surface
area.45-47 In MD simulations with the IS model, the hydro-
phobic effect is normally accounted for by an artificial energy
term that is proportional to the solvent exposed solute surface45-47

with a proportionality constant γ varying between 5 and 40
cal/(mol Å2).33,48-51 There have been a number of efforts in
recent times to advance IS models23,24,38,42,43 to simulate
dynamics of biomolecules efficiently and to come close to
results of computationally more expensive conventional MD
simulations with an ES model. However, some GB imple-
mentations have the tendency to become inefficient for large
molecules.

IS models were also optimized to compute solvation
energies efficiently.52-54 There, it was found that electrostatic
models combined with surface energy alone is not appropri-
ate and must be supplemented by a volume term accounting
for solvent cavity formation.52 Here, we study the energetics
of 1,2-dimethoxy-ethane (DME) and polyethylene glycol
(PEG) conformers in an implicit solvent. Since their volumes
practically do not vary with the conformers, these optimized
IS models are not applicable in our case.

But there is still another artificial effect, which is generally
present in IS models. In explicit water simulations (and also
in real molecular systems), the attractive solute-solute and
solute-solvent vdW interactions compete with each other
and thus balance the composition of solute and solvent atoms
in the neighborhood of solutes. In the absence of ES, only
the attractive solute-solute vdW interactions are left, and
as a result the neighborhood of solute molecules is unbal-
anced. These solute-solute interactions occur between atoms
of different solute molecules (intermolecular) but also
between atoms of the same solute molecule (intramolecular).
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Removing the solvent molecules, the solute molecules
interact differently. Since all atoms are subject to the mutual
attractive vdW interactions, one observes for MD simulations
in the absence of solvent, aggregation of different solute
molecules and for flexible solute molecules also self-
aggregation, leading to solute conformers which are too
compact. The influence of solute-solvent vdW interactions
on molecular solvation energies, ligand binding, and protein
docking was discussed many times. However, to the best of
our knowledge, it was first pointed out in ref 55 that this
effect can also influence molecular conformations signifi-
cantly. An IS force field including the effect from the
solute-solvent vdW interactions appropriately by using a
volume term was recently developed and applied to pro-
teins.56

The hydrophobic effect13,15,29-31 is based on the entropy
content of the water structure, which assumes a maximum
for undisturbed bulk water. While the hydrophobic effect
has a physical basis, the mutual attraction of solute molecules
in IS models, where attractive vdW interactions are not
balanced, is an artifact. The hydrophobic effect causes an
effective attraction between different solute molecules and
in the case of flexible solute molecules also between atoms
of the same solute molecule. It is properly considered in
explicit water MD simulations16,57 and is for instance the
driving force of protein folding.6,7,12 In implicit water
simulations with vanishing surface energy, the effective
attractive hydrophobic interaction between solute molecules
is absent, while conversely the lack of balance in the
attractive vdW interactions between solute-solute and
solute-solvent contacts leads to an artificial attraction
between solute molecules. Hence, under these conditions of
an IS model, these two effects partially compensate each
other.

Hence, in an IS model, proper tuning is required for the
surface energy replacing the hydrophobic effect and the
strength of the unbalanced vdW attractions. For similar
reasons, it may be necessary to adjust Coulomb interactions
for specific atom pairs of the solute to compensate for the
absence of explicit H bonds with water molecules, which
may have not been considered appropriately by the con-
tinuum electrostatic approach. Similar, more subtle effects
can be due to a specific H-bond pattern between solute and
water molecules, which may stabilize specific solute con-
formations and thus change the equilibrium distribution
between them. As we will see, to account for all these effects
appropriately, we need to adjust not only specific atom pair
Coulomb interactions but also specific torsion potentials.

As a model system, we will study polyethylene glycol
(PEG)58,59 involving the ethylene glycol repeat unit
(-CH2-CH2-O-) (Figure 1). Crystallized and amorphous
PEG adopt predominantly helix-like conformers (Figure

2).60,61 They involve the most prevalent local structure TGT
(see Figure S1, Supporting Information) found in 1,2-
dimethoxy-ethane (DME) and PEG. Ab initio quantum
chemical calculations of DME, which include solvent effects
by continuum electrostatics62 as well as MD simulations with
umbrella sampling in explicit water,63 indicate that DME
prefers the TGT conformer, which is also evident from
Raman,64 IR,65 and NMR studies.66 The helical structure of
PEG is stabilized by water bridges between nearest neighbor
oxygen atoms in PEG. This has been reported by NMR,67

the ab initio quantum chemical method,68 and MD simula-
tion69-71 studies.

PEG is water-soluble, is nontoxic, degrades slowly by
metabolic enzymes, and possesses low immunogenicity.72,73

Therefore, it is widely used as an excipient in different
pharmaceutical formulations, foods, and cosmetics.74,75 PEG
is also used as a precipitant agent for protein crystallization.76

Being flexible and water-soluble, PEG can be used to create
high osmotic pressure.77,78 Coating gene therapy vectors with
PEG reduces innate immune responses.79 Self-assembled
monolayers on a gold surface resist protein adsorption from
aqueous solutions, if terminated with PEG.80-82 PEG is of
interest for the pharmaceutical industry to encapsulate drugs
in nanoparticle structures or dendrimers made of PEG based
polymeric material.75,83-86 It can also be used to connect
ligands serving as drugs to form dimeric or even multimeric
ligands to enhance drug activity by the multivalent binding
effect.87,88 In multivalent ligand binding, the chain entropy
of PEG plays a key role in understanding the effect
quantitatively. So far, only a simple Gaussian chain model
was used to describe the influence of the PEG linker on
bivalent ligand binding.89,90

Because of the importance of PEG, it was the focus of
many experimental81,91 and computational studies.71 Re-
cently, the PEG force field parameters92,93 for explicit water
MD simulations were optimized in CHARMM.94,95 The
present study on IS generalized Born with simple switching
(GBSW)32-34 models uses results of MD simulations with
ES based on this improved force field as a reference. Here,
we like to demonstrate how large deviations in local and
global conformational features of PEG can be, if one uses
state of the art IS models like GBSW32-34 for a flexible
molecule, and what one has to change to obtain a faithful
force field for IS GBSW MD simulations. We also try to
show for DME and PEG to what extent two more GB based
IS models (GBMV35,36 and FACTS37) implemented in

Figure 1. Schematic structure representations of DME (A)
and PEG6 (B). Atoms are numbered to refer to specific
numbering used in the text.

Figure 2. Side (A) and top (B) views of the PEG helix
conformer composed of 12 monomer units in local TGT
conformations comprising two helix turns. TGT is the most
dominant local structure of PEG as well as of DME (see
Figures S1 and S2 of the Supporting Information).
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CHARMM94,95 may yield MD simulation data deviating
from data obtained with corresponding ES models.

Methods

General Considerations. In the recent years, much effort
was placed in the development of theoretical models explain-
ing the conformational preference of 1,2-dimethoxy-ethane
(DME).58 For this purpose, specialized classical force field
parameters for MD simulations of DME and PEG were
developed96,97 and applied,98,99 indicating the existence of
specific DME conformers in the liquid phase. Recently, the
CHARMM force field has been complemented with param-
eters for ether compounds,92 which were further adjusted in
CHARMM3593 using DME Raman spectra.64

The DME structure can be characterized by three dihedral
angles defining the local arrangement of a set of four
covalently connected atoms (C-O-C-C, O-C-C-O, and
C-C-O-C). Each of the torsion angles can be in one of
the three possible torsion angle intervals, which are centered
around 180°, called the trans (T) conformer, or around +60°
or -60° corresponding to the two possible gauche (G, G′)
conformers. In MD simulations with the ES model, DME
adopts a mixture of mainly four conformers, which ordered
with decreasing population are TGT, TGG′, TGG, and TTT
(see Figures S1 and S2 of the Supporting Information and
the insert of Figure 4A). These DME conformers have been
observed in various solvents like water,100 methanol, and
carbon tetrachloride.101 Among these four principal conform-
ers, it has been noticed that TGT has the lowest free energy.
In experiments,100,101 one observes an interesting inverse
correlation between the gauche C-C bond and C-O bond
populations, which is prevalent in DME and PEG chains and
thus corroborates the choice of DME as a model compound
to adjust the PEG force field.93

Inspired by the Born equation to compute solvation
energies of ions,102 a number of generalized Born (GB)
models33,36,37,40,49,50,103-105 have been developed in the past
years. In GB models, the effective nonpolar interactions
related to the hydrophobic effect are generally proportional
to the solvent accessible surface area (SA).106 In the actual
CHARMM force field, version 35 (CHARMM35),93 the
GBSW32-34 module for IS MD simulations uses as a default
value the proportionality constant γ ) 30 cal/(mol Å2) for
the surface energy term.

To optimize an IS force field for PEG, we considered the
GBSW32-34 model in detail to evaluate the electrostatic
interactions as implemented in CHARMM combined with
the ES ether force field parametrization of CHARMM35.93

To probe the generalities of our results found with the
GBSW32-34 model, we also explored two more GB models
available in CHARMM (GBMV35,36 and FACTS37). Al-
though we did not consider the GB models in AMBER107,108

explicitly, their parametrization is qualitatively similar to GB
models considered in the present study, such that we expect
analogue behavior.

Henceforth, we refer to MD simulations using CHARMM35
with the TIP3P water model109 as an explicit solvent (ES)
model and in the absence of a solvent as described above

with default CHARMM35 parametrization as the IS GBSW
model with a positive surface energy. The different IS GBSW
models considered in the present study are labeled by
additional information where they deviate from the default
CHARMM35 parameter settings. For the other two GB
models (GBMV and FACTS) considered here, we varied the
surface energy only. The computations based on the IS
GBMV model use the CHARMM35 force field with the
recent adjustments for PEG,93 while the IS FACTS model
is based on the CHARMM2295 force field.

Scaling CHARMM Interactions for Implicit Solvent
Simulations. The polyether torsion potentials VO-C-C-O(φ)
and VC-O-C-C(φ) describing the rotation barrier for the C-C
and O-C bonds, respectively, were for explicit solvent
simulations optimized yielding in units of kcal/mol

In order to match the torsion angle distributions between
ES and IS GBSW model simulations, the parameter of the
first term in VO-C-C-O(φ) was increased from 0.59 to 1.09,
while the parameter of the second term in VC-O-C-C(φ) was
reduced from 0.29 to 0.20.

Furthermore, we varied the surface energy term described
by the surface tension coefficient γ,21,110 whose value is
proposed to be 30 cal/(mol Å2)32,33 in the CHARMM35 IS
force field. We also varied the attractive r-6 term of the LJ
atom-pair interactions. Fine tuning of the energy function
of the IS GBSW model required also a change in the
Coulomb interactions of the 1-4 atom pairs and of the 1-5
O-H (e.g., O2-H6 and O5-H1 where the subscript at H refer
to the carbon atom to which the hydrogen atom is attached
to, see Figure 1) atom pairs.

MD Simulation Protocols. The program CHARMM was
used to prepare the ES MD simulation setup with the
CHARMM35 ether force field.93 The TIP3P model109,111 was
used for water. The long-term MD simulations were per-
formed by NAMD.112 These were 0.1 µs for DME with 199
TIP3P water and 1 µs for PEG6 with 1477 TIP3P water.
All parameters and conditions for NAMD were the same as
for CHARMM. The temperature was controlled by Langevin
thermostat with friction coefficient � ) 2 ps-1, and
electrostatic interactions were evaluated using the particle
mesh Ewald method.113 The first 1 ns was discarded to allow
for equilibration. Atomic coordinates were saved every 0.2
ps time step. More details on the ES simulation conditions
are given in the Supporting Information.

For the three different IS models, MD simulations were
carried out with CHARMM35 using the modules
GBSW,32-34,104 GBMV,35,36 and FACTS.37 A canonical
NVT ensemble was used maintaining the temperature at 300
K with the Nose-Hoover thermostat.115,116 For GBSW and
GBMV, the ether force field93 was used. To define the
electrostatic boundary, GBSW used the vdW surface with
optimized atomic Born radii,114 GBMV used the molecular
surface, while FACTS used the solvent accessible surface

VO-C-C-O(φ) ) 0.59(1 + cos(φ - π)) + 1.16(1 +
cos(2φ)) (1a)

VC-O-C-C(φ) ) 0.57(1 + cos(φ)) + 0.29(1 +
cos(2φ)) + 0.43(1 + cos(3φ)) (1b)
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area approach. For DME and PEG6 MD, simulations of 100
and 400 ns (200 ns for GBMV) were performed, respectively.
Atomic coordinates are saved every 0.2 ps. More details on
the simulation conditions are given in the Supporting
Information.

Comparison of MD Simulation Data of Explicit and
Implicit Solvent Models. To compare the behavior of the
DME and PEG force fields using the ES and the IS GBSW
models, we considered specific atom pair distance distribu-
tions, which were evaluated with standard histogram tech-
niques using the conformers from MD simulation data. The
torsion potentials of the IS GBSW models for DME and PEG
were optimized by comparing the corresponding torsion
potentials. These were obtained by first evaluating the
probability distribution of the torsion angles from the
conformers of the MD simulation data by a histogram
method. These probability distributions were then trans-
formed to free energies by taking the negative logarithm of
these probabilities and multiplying them by kBT with T )
300 K.

How efficient MD simulations explore the space of PEG
conformers is found out by observing how the end-to-end
atom pair distance distributions g(t)(x) evolve with the total
time span t used for the ensemble averages. A suitable
quantity to measure how fast the limit distribution g(∞)(x) of
the ensemble is approached with the MD simulation time is
the integral of the square deviation

Alternatively, one can monitor the end-to-end distance
autocorrelation function of the time dependent distance d(t)

Results and Discussion

General Considerations. A general overview of typical
results from state of the art MD simulations applied to DME
can be found in Figure 3, where the end-to-end distance
distribution is displayed for simulations under conditions of
vacuum, ES, and IS models, i.e., GBSW,32,33 GBMV,35,36

and FACTS.37 It is not surprising that differences of DME
conformations between explicit water and a vacuum are
enormous (see dashed and solid lines in Figure 3A, respec-
tively). But, conformational distributions of DME obtained
with IS simulation conditions can still differ considerably
from results of ES MD simulations. In particular, we
observed that the most prominent TGT conformer is for all
values of surface tension parameter γ less populated with
IS than with ES simulation conditions (see Figure 3 and
Figure S3, Supporting Information). With the IS model
having positive surface energy, DME conformers are gener-
ally too compact due to the positive surface energy term and
the unbalanced vdW attractive r-6 terms that preferentially
populate the TGG′ and TGG conformers (see dotted line in
Figure 3A and dotted lines in Figure S3, Supporting
Information). Although the DME conformer distribution
obtained with the IS model with positive surface energy

shows large deviations relative to results from the ES model,
the TGT conformer corresponding to the helix conformation
of PEG (see Figure 2) remains the most populated one.
Hence, the electrostatic screening effect due to an unspecific
H-bond pattern of DME-water interactions, which is mod-
eled by GB electrostatics, approximates qualitatively the most
prominent features of the DME conformer distribution. The
DME conformer distributions obtained with the IS GBSW
model show compared to commonly used positive surface
energies [γ ) 30 cal/(mol Å2)] relatively small variations
for moderate negative surface energies [γ ) -15 cal/(mol
Å2)] (see Figure S3A, Supporting Information). Under the
same conditions, the other two IS models available in
CHARMM (GBMV35,36 and FACTS37) show comparatively
larger variations (see Figure S3B and C of the Supporting
Information).

In the following, we like to demonstrate what is respon-
sible for the deficiencies of the IS GBSW model and how
one can bridge the gap to reach better agreement with ES
simulation data for DME and PEG. To optimize the energy
function for the IS GBSW model, we first considered DME.
For this purpose, we studied how the MD simulation data

[∆g(t)]2 ) ∫ [g(t)(x) - g(∞)(x)]2 dx (2)

c(∆t) )
〈[d(t) - dj][d(t + ∆t) - dj]〉t

〈[d(t) - dj]2〉t

(3)

Figure 3. Conformational distribution of DME monitored by
the C1-C6 end-to-end distance obtained from MD simulations
under different force field conditions. (A) Comparison of ES
results with data based on a vacuum and the IS GBSW model:
vacuum conditions (solid line); explicit water (dashed line);
IS GBSW with vanishing surface energy (dashed-dotted line);
IS GBSW model with positive surface energy [γ ) 30 cal/
(mol Å2)] (dotted line). (B) Comparison of ES results with three
different IS models, all with a vanishing surface energy term:
explicit water (dashed line); IS GBSW32-34 (dashed-dotted
line); IS GBMV35,36 (dotted line); IS FACTS37 (solid line).
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for the IS GBSW DME model depend on the strength of
the vdW attraction and the surface energy term. Next, we
investigated how the IS GBSW DME model varies with the
strength of specific Coulomb interactions. We optimized
these above-mentioned interactions before we started to fine-
tune the energy function with respect to the torsion potentials.
Finally, we investigated whether the DME optimized energy
function can be transferred to PEG.

As we will see later, a more accurate DME conformer
distribution is obtained with an IS GBSW model with slightly
reduced 1-4 Coulomb interactions, indicating a subtle but
relevant contribution due to the specific H-bond pattern of
water in the neighborhood of DME and PEG. This qualita-
tively correlates with earlier studies on the importance of
the H-bond pattern between PEG and water that stabilizes
the helical structure of PEG.67-71

Comparison of MD Simulation Data of DME with
Explicit and Implicit Water Models and the Role of
vdW Attraction and Surface Energy. We first like to
compare MD simulation data of DME (see Figure 1),
obtained with the ES and IS GBSW model with positive
surface energy. Searching for a data representation, which
shows the differences between the conventional ES and IS
GBSW models most clearly, we found that this is the case
for the end-to-end distance distributions of the DME atoms
C1 and C6 (Figure 1). The dashed line in Figure 4 shows the
distance distributions for the ES model and the dotted line
for the IS GBSW model. One can clearly observe that, with
the IS GBSW model, the compact DME structure at 4.5 Å
is considerably more populated at the expense of the more
extended structure at about 5.5 Å (see Figure 4A, dotted line
compared to dashed line and schematic DME structures
therein). Furthermore, in the IS GBSW model, a shoulder
appears at 6.0 Å end-to-end distances, which is absent in
the ES model. The enhanced occurrences of the compact
structures in the IS GBSW model are due to unbalanced vdW
interactions, as we will see.

One can qualitatively correct for the enhanced occurrence
of compact structures by decreasing the attractive wing of
the LJ interaction (except for the 1-4 atom pair interaction,
which is part of the corresponding torsion potential and
therefore should not be changed), or by decreasing the
surface energy term into the negative regime as shown in
the top and bottom parts of Figure 4, respectively. To account
for unbalanced vdW interactions, negative surface energies
were also considered to characterize the energetics of protein
mutants.23 However, negative surface energies were oc-
casionally also used for IS GBSW models to account for
dielectric screening, in the absence of more expensive
electrostatic approaches like GB or PB.24

With extreme values of negative surface tension [γ )
-200 cal/(mol Å2)], the effect from the surface energy term
saturates (Figure 4B). But, even with such extreme correc-
tions, the end-to-end distance distribution of DME obtained
with the IS GBSW model shows still marked deviations
relative to the reference distribution obtained for conventional
ES MD simulations (dashed line in Figure 4B): The side
maximum at 4.5 Å remains, while it appears in the ES MD
simulation as a shoulder only. Furthermore, a significant

shoulder appears at 6.0 Å, referring to the most extended
DME structure (i.e., the TTT conformer), and the main
maximum is shifted to larger distances. A similar behavior
in the end-to-end distance distribution of DME is observed,
if the attractive r-6 term of the vdW interaction is lowered
from 1.0 by up to a factor of 0.1 (see Figure 4A).

Implicit Water Models of DME and the Role of 1-4
and 1-5 Coulomb Atom Pair Interactions. Exploring
different options to improve the agreement of MD simulation
data of DME, it turned out to be useful to first optimize the
nonbonded interactions. Although the GB approach accounts
for electrostatic contributions of solute-solvent interactions,
there may be deficiencies, which need to be corrected. The
strongest electrostatic interactions of DME and PEG involve
ether oxygen pairs and ether oxygen with nonpolar hydro-
gens. Hence, we studied the dependence of the end-to-end

Figure 4. Role of attractive vdW and surface energy. The
end-to-end distance distributions of DME obtained from MD
simulation is shown for the ES (dashed line) and IS GBSW
models with positive surface energy (dotted line). (A) The r-6

vdW attraction (except the 1-4 atom pair interaction) is scaled
down by factors of 0.9, 0.7, 0.5, 0.3, and 0.1 (solid lines). The
four most dominant DME structures are shown for the maxima
at 4.5 and 5.5 Å and the shoulder at 6.0 Å, corresponding to
structures where subsequent three torsion angles (C-O-C-C,
O-C-C-O, C-O-C-C) correspond to TGT, TGG′, TGG,
and TTT, respectively. (B) The surface tension coefficient γ
is varied from 0, -50, -100, and -200, cal/(mol Å2) (solid
lines). Note that for these exceedingly negative surface
energies, variations of DME conformers can be observed also
with the IS GBSW model favoring conformers with larger
surfaces. The arrows indicate the direction of the changes in
the distribution occurring by decreasing either the vdW
attraction (A) or the surface tension coefficient (B).
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distance distribution of DME on the Coulomb interactions
of all 1-4 and oxygen-hydrogen 1-5 atom pairs (O-H;
e.g., O2-H6 and O5-H1, where Hi is attached to Ci), shown
in Figure 5 (solid lines), top and bottom parts, respectively.
We suspected that the direct Coulomb interactions for these
atom pairs may be overestimated. Therefore, they were scaled
down by factors of 0.9, 0.7, 0.5, 0.3, and 0.1 (Figure 5).

Scaling down the 1-4 atom pair Coulomb interactions
(Figure 5A) removes the shoulder at 6.0 Å and simulta-
neously can partially fill the valley between the side (at 4.5
Å) and main maximum (at 5.5 Å) of the end-to-end distance
distribution. The former is mainly due to the 1-4 O-O
electrostatic repulsion. Furthermore, while the height of the
main maximum remains essentially invariant, its position is
shifted slightly to lower distances. All these changes are
useful to correct deficiencies that remained or appeared after
diminishing vdW attraction or surface energy as discussed
in the preceding subparagraph.

The 1-5 O-H interaction governs the strength of the
weak H bond between O2 (O5) and the methyl group at
position 6 (1). We also suspected that this direct 1-5 O-H

interaction may be weaker in explicit solvent. Scaling down
this interaction converts the side maximum at 4.5 Å to a
shoulder similar to the ES model but of lower intensity.
Simultaneously, the shoulder at 6.0 Å corresponding to all-
trans stretched conformation (see Figure 5B) grows consider-
ably, and the main maximum shifts to larger distances.
Although the latter is unfavorable, in combination with the
scaling of the 1-4 Coulomb interaction, it can be useful.

Implicit Water Models of DME: Fine-Tuning of
Energy Function. The next step is to optimize the above-
discussed four different nonbonded energy terms, which are
(1) the attractive vdW term, (2) the surface energy, (3) the
1-4 atom pair Coulomb energy, and (4) the 1-5 O-H
Coulomb energy. This was done in a tedious manual
optimization procedure, where we first monitored the end-
to-end distance distribution of DME (see Figure 6A). In
doing so, we found two possible nearly equivalent solutions,
which have in common that the interactions 3 and 4 are
reduced to 90%. One option is with vanishing surface energy
(γ ) 0) where the vdW attractive r-6 term is reduced to
90% (red lines with open circles O in Figure 6). The second
option is to assume a slightly repulsive surface energy term
[γ ) -6 cal/(mol Å2)] with no change in the vdW attractive
interaction (green lines with × in Figure 6). The correspond-
ing end-to-end distance distributions are already close to the
results obtained with the ES model (dashed line in Figure
6) that is used as a reference, but there is still room for
improvement.

Alternatively to the reduction of specific Coulomb interac-
tions as explained above (see also Table 1) to 90% of their
original values, we lowered the Born radius of ether oxygen
from 1.80 Å to 1.52 Å. The latter is the Born radius of
backbone oxygen used in CHARMM.94,95 Due to the
stronger solvation of such oxygens, the corresponding explicit
solute-solute interactions are effectively weakened, yielding
better agreement with ES simulation data (see Figure S6 of
the Supporting Information).

Optimization of the torsion potentials was done in the next
step. For this purpose, we observed the free energy profiles
of the torsion angles as derived from MD simulation data.
We show the results of MD simulations for the torsion
potentials involving rotations around the two C-O bonds
and the C-C bond of DME in parts B and C of Figure 6,
respectively. Most relevant is the C-C bond rotation, which
shows still larger deviations from the MD simulation data
obtained with the ES model (compare the dashed line with
the green and red line in Figure 6C). Optimizing the
parameters of the torsion potentials to the values given in
Table 1, we obtain the black solid lines in Figure 6 marked
with symbols O (×) referring to vanishing surface energy
(γ ) 0) and vdW attraction at 90% (negative surface energy
[γ ) -6 cal/(mol Å2)] and unchanged vdW interaction).
With this choice of the torsion potentials, we are essentially
closing the gap appearing in the effective C-C bond torsion
potential (Figure 6C) between the results of the ES reference
model and the IS GBSW models. Slight improvements can
also be observed for C-O torsion angle distribution and the
end-to-end distance distribution (Figure 6A,B). The 1-5
O-C (O2-C6 and C1-O5) and the 1-4 O-O (O2-O5) and

Figure 5. Role of 1-4 and 1-5 O-H atom pair interactions
for the end-to-end distance distributions of DME obtained from
MD simulation. In A and B, the dashed line refers to the ES
and the dotted line to the IS GBSW model with positive
surface energy. (A) The 1-4 atom pair Coulomb interaction
is scaled down by factors of 0.9, 0.7, 0.5, 0.3, and 0.1 (solid
lines). (B) The 1-5 oxygen-hydrogen (O2-H6, O5-H1)
Coulomb interaction is scaled down by factors of 0.9, 0.7, 0.5,
0.3, and 0.1 (solid lines). The arrows indicate the direction of
the changes in the distribution occurring by decreasing either
the 1-4 atom pair (A) or the oxygen-hydrogen (B) electro-
static interaction.
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distance distributions of DME are shown in Figure S4B and
C of the Supporting Information, respectively. They also
agree well with the MD simulation data of the ES model.

The force field parameters for the ES and IS GBSW model
with positive surface energy and the two optimized IS GBSW
models of DME are collected in Table 1. In the Supporting
Information, we compare the populations of DME conform-
ers obtained with the bare GB and the IS GBSW model with
positive surface energy models for the atom pair distances
(Figure S4, Supporting Information) and the torsion potentials
(Figure S5, Supporting Information). These populations
exhibit only moderate variations, since for moderate-sized
surface tensions, the surface practically does not vary
between the four most populated DME conformers (TGT,
TGG′, TGG, TTT; see Gsurface values in Figure S1 of the
Supporting Information).

MD Simulation of PEG in Implicit Solvent with the
Fine-Tuned Energy Functions. We now explore whether
the IS GBSW model developed for DME can be transferred
to PEG. For this purpose, we compare MD simulation data
of PEG6 (involving 6 monomer units) based on the ES model
with data of PEG6 obtained with the two IS GBSW models
that were optimized for DME.

We first analyze the local conformers of PEG6. The C1-C6

atom pair distance distributions of PEG6 (Figure S7A of the
Supporting Information) are virtually identical to the corre-
sponding end-to-end atom pair distribution of DME (compare
Figure 6A). With the two optimized force fields, one obtains
for PEG6 practically the same agreement with the data based
on the ES model as for DME. The same is true for the
distance distributions of 1-5 O-C (O2-C6) (Figure S7B
of the Supporting Information) and 1-4 O-O (O2-O5) atom
pairs (Figure S7C of the Supporting Information), where the
corresponding distance distributions for DME are shown in
Figure S4B and C of the Supporting Information. The torsion
potentials obtained for PEG6 that correspond to the DME
data shown in Figure 6B and C are displayed in Figure S8A
and B of the Supporting Information. The corresponding
distance distributions of PEG6 for more distant O-O atom
pairs are shown in Figure S10 of the Supporting Information.

The global behavior of the PEG6 conformers is probed
by the end-to-end C1-C19 atom pair distance distribution.
Agreement with the global behavior of conformers obtained
with the ES model is much more demanding for the larger
PEG6 chain molecules than for the small DME. Nevertheless,
the agreement of the optimized IS GBSW models (Figure
7A, solid lines with O (×) symbols) is fairly good, while
the IS GBSW model with positive surface energy fails
(Figure 7A, dotted line).

To probe the generalities of our results found for PEG6
with the GBSW32-34 model, we also explored the other two
GB models available in CHARMM, i.e., GBMV35,36 and
FACTS,37 using positive [γ ) 30 cal/(mol Å2)] and vanishing
surface energies [γ ) 0 cal/(mol Å2)]. Under the same
conditions, the GBMV model shows large variations for
positive and vanishing surface energies. The latter is in good
agreement with the ES results (Figure 7B). For DME (Figure
S3B of Supporting Information), the corresponding structural
variations obtained with GBMV are comparatively moderate.

On the other hand, the PEG6 end-to-end distance distribu-
tion obtained with FACTS shows only small variations (even
smaller than they appear for DME; see Figure S3C of

Figure 6. DME simulation data. Dashed (dotted) lines are
the results based in the ES (IS GBSW with positive surface
energy) model. All other data have in common that the 1-4
and 1-5 O-H atom pair Coulomb interactions are reduced
to 90%. Red (green) lines with ‘o’ (‘x’) symbols display MD
simulation data where the surface energy vanishes (γ ) 0)
and the attractive vdW interaction is reduced to 90% (the
surface energy is negative [γ ) -6 cal/(mol Å2)] and the vdW
interaction unchanged). The black solid lines show the final
optimized MD simulation data including also the torsion
potential corrections as described in the method section and
Table 1. (A) End-to-end (C1-C6) distance distribution of DME.
(B) Free energy profiles averaged over the two C-O-C-C
torsion angles (C1-O2-C3-C4 and C3-C4-O5-C6). (C) Free
energy profile of the O-C-C-O torsion angle (O2-C3-
C4-O5). DME simulation data obtained by using the GB model
only (IS with vanishing surface energy) are shown in Figures
S4 and S5 of the Supporting Information.
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Supporting Information) with positive and vanishing surface
energy terms and good agreement with the ES simulation
data in both cases (Figure 7C). The insensitivity of FACTS
on the variation of the surface energy in the end-to-end
distance distribution of PEG6 as compared to a strong
dependence found in the IS models of GBSW and GBMV
may be related to the different way FACTS evaluates the
effective molecular surface separating a low from a high
dielectric medium. Naturally, the distributions of the local
conformations of DME and consequently also of PEG do
not agree so well for GBMV and FACTS, since they are
not specifically optimized for DME and PEG, as it was done
for the IS GBSW model in the present study.

While the maximum of the end-to-end distance distribution
is at 13.5 Å for the ES model, it is only at 7 Å for the IS
GBSW model with positive surface energy. The most
probable distance of PEG6 in the ES model is considerably
smaller than the end-to-end distance in the ideal TTT and
TGT helix conformations, which are 24 Å and 18.5 Å,
respectively. The distance of the energy minimized PEG6
helix conformer remains with about 17.2 Å for the IS GBSW
model with positive surface energy and the optimized IS
GBSW model close to value of the ideal helix structure of
PEG. In addition to end-to-end distance distribution, the
radius of gyration is also measured to assess the global
structure of PEG6 and is shown in Figure S11 of the
Supporting Information.

For the IS GBSW model with positive surface energy, the
PEG6 conformers are generally much more compact due to
the attractive surface energy term and the unbalanced vdW
attractive r-6 terms that both predominantly populate the
TGG′ and TGG conformers (see Figure 7A, dotted line).
However, also the attractive Coulomb interactions of the 1-5
O-H atom pairs that preferentially populate the TGG′ state
of DME (see insert in Figure 4A) may contribute to the more
compact PEG6 conformers of the IS GBSW model with
positive surface energy. One may suspect that it may also
be favorable to reduce the Coulomb interactions for all atom
pairs of the type 1-5 O-H to 90%. We tried it but obtained
PEG6 conformers that were much too extended (results not
shown). Hence, the best agreement with the ES model of
PEG is obtained, if the force field optimized for the DME
IS GBSW model is directly transferred to PEG.

Interestingly, the bare GB model without surface energy
term applied to PEG6 yields an end-to-end distance distribu-
tion very close to the results obtained with the ES model

(see Figure 7A, dashed-dotted line). However, the local PEG
conformations obtained with the bare GB model differ from
the ES model for both PEG6 and DME in the same way
(compare Figures S7 and S8 as well as Figures S4 and S5,
Supporting Information). Using small or nearly vanishing
surface energies agrees with recent applications to compute
solvation energies.48-50,52,117

Exploring the Conformational Space of PEG with
MD Simulations. We evaluated the end-to-end distance
autocorrelation functions of PEG6 according to eq 3, which
exhibits a stretched exponential decay behavior exp(-t�) with
� ) 2/3 (Figure S12B of the Supporting Information) for
the ES model, while for the IS GBSW models the decay
behavior obeys a power law t-R with R ) 1/2 (Figure S12A
of the Supporting Information). A stretched exponential
decay behavior with � ) 1/2 was for instance also found
for the Rouse polymer model in viscous media, which is
typical for dynamics governed by defect diffusion.118

Evidently the IS GBSW models show long-term dynamics,
which differs from the dynamics of the ES model. The end-
to-end distance autocorrelation function of PEG6 decays by
2 orders of magnitude in about 300 ps for the IS GBSW
model and in about 1 ns for the ES model.

It is interesting to compare how efficient ES and IS GBSW
models of PEG explore the conformational space with time.
We expected that the behavior of the two models will differ,
since in the absence of explicit solvent the dynamics of IS
GBSW models are not slowed down by solvent viscosity.
For that purpose, we monitored how the end-to-end distance
distributions of PEG6 starting from the all trans stretched
conformer approach the limit distribution of the ES model
gES

(1µs)(x) obtained with the maximum available time span of
1 µs. The time evolutions of the integral square deviations
[∆g(t)]2, eq 2, from limit distribution gES

(1µs)(x) are displayed
in Figure 8 for the ES and IS GBSW models in a double
logarithmic plot where the time decay appears approximately
linear corresponding to a t-R power law with R ) 2/3.

According to Figure 8, the end-to-end distance distribution
of PEG6 seems to be converged after about 50 ns in the ES
model (dashed line). At larger sampling times (t), [∆gES

(t)]2

assumes a small plateau value with superimposed statistical
fluctuations, since the ensemble of conformers is no longer
large enough to exhibit further decay in [∆gES

(t)]2. In the last
300 ns, [∆gES

(t)]2 decays to zero, since the limit distribution
gES

(1µs)(x) representing the ensemble average is identical with
the average using the maximum time span of 1 µs.

Table 1. Force Field Parameters Used for DME with Explicit Solvent (ES) and Implicit Solvent (IS) GBSW Models

CHARMM35 force field adjusted CHARMM35 force fielda

force field term ES ISb ISfinal_r-6(0.9)b ISfinal_γ(-6)b

C-O-C-C eq (1b) 0.29/2/0 0.29/2/0 0.20/2/0 0.20/2/0
O-C-C-O eq (1a) 0.59/1/180 0.59/1/180 1.09/1/180 1.09/1/180
vdW (no14) 1.0 1.0 0.9 1.0
e14fac 1.0 1.0 0.9 0.9
elec O(1)-H(6) 1.0 1.0 0.9 0.9
γ [cal/mol Å2] N/A 30 0 -6

a The two adjusted CHARMM3593 ether force fields both involve down-scaling of 1-4 all atom and 1-5 O-H atom pair Coulomb
interactions to 90% and optimized parameters of torsion potentials (see eqs 1a and 1b). The IS GBSW models ISfinal_r-6(0.9) and
ISfinal_γ(-6) force fields refer to the cases of (i) vanishing surface energy (γ ) 0) and 90% of attractive vdW interaction and (ii) negative
surface energy [γ ) -6 cal/(mol Å2)] and vdW interaction unchanged. b IS GBSW model.32-34
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The PEG6 conformer distributions that are based on the
two IS GBSW models converge earlier at about 10 ns (solid
lines in Figure 8). Beyond this time span until the maximum
time span of 400 ns, the integral square deviations of the
end-to-end distributions [∆gIS

(t)]2 are approximately constant
at a low value that corresponds to small deviations of the
limit distribution gES

(1µs)(x) based on the ES model and the
limit distributions gIS

(0.4µs)(x) based on the two optimized IS
GBSW models. Hence, the dynamics of PEG6 with the IS
GBSW model are about a factor of 5 faster than with the
corresponding ES model, in agreement with MD simulations

of different molecules using the IS GBMV model with a
low friction coefficient.27 The exploration of the PEG6
conformational space as probed by the end-to-end distance
distributions is surprisingly slow compared to the behavior
of the autocorrelation function of the same quantity, which
decays by 2 orders of magnitude faster in about 1 ns and
300 ps for the ES and IS GBSW models, respectively (see
Figure S12 of the Supporting Information).

Snapshots of the end-to-end distance distributions for
different time spans are shown in Figure S14 (Supporting
Information) for the ES model of PEG6 together with the
final distribution for the time span of 1 µs. The end-to-end
distance distribution of PEG6 obtained from MD simulation
with the ES model where the 1 µs trajectory was split into
10 segments, each 0.1 µs long, is shown in Figure S15 of
the Supporting Information.

Conclusions

Explicit solvent (ES) MD simulations are computationally
expensive due to the large number of atom pair interactions,
which need to be evaluated. Alternatively, one can perform
MD simulations with an implicit solvent (IS) model that
compromises between efficiency and accuracy. In an IS
model, the electrostatic solute-solvent interactions are often
modeled by simplified GB electrostatics, and the hydrophobic

Figure 7. End-to-end (C1-C19) distance distributions for
PEG6 obtained from MD simulation data with ES (1 µs)
(dashed lines in parts A, B, C) and three IS models: (A)
GBSW32-34 (400 ns), (B) GBMV35,36 (200 ns), and (C)
FACTS37 (400 ns) with varying surface energies, i.e., positive
surface energy [γ ) 30 cal/(mol Å2)] (dotted lines), vanishing
surface energy [γ ) 0 cal/(mol Å2)] (dashed-dotted lines). The
solid lines in part A with O (×) symbols show the data from
two optimized GBSW models (see Table 1).

Figure 8. Efficiency of MD simulations to explore the
conformational space of PEG6. Integral square deviation
[∆g(t)]2, eq 2, of end-to-end atom pair distance distribution as
a function of the time span used to obtain the ensemble
average. Each time span starts at t ) 0, where the initial PEG6
conformer is stretched all-trans. The lengths of the time spans
to evaluate the averages of the distance distributions range
from 1 ps to up to 1 µs. Dashed line displays [∆gES

(t) ]2 for the
ES model. Solid lines show the time evolution of IS GBSW
models with a maximum time span of 400 ns. The symbols O
and × refer to the two optimized IS GBSW models (see Table
1). The reference distribution gES

(1µs)(x) for all three cases
considered here is taken from the ES model using the
maximum time span of 1 µs. Additional trajectories of 50 ns
time were generated for PEG6 with different seeds of the
random number generator for both optimized IS GBSW
models, which show similar behavior (Figure S13 of Support-
ing Information).
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effect is modeled by a surface energy term. The latter should
generally favor compact solute conformers.

In MD simulations with an ES model, the attractive vdW
interactions between solute atoms compete with correspond-
ing interactions of solute-solvent atom pairs, leading thus
to balanced and effectively weaker solute-solute interactions.
For small molecular units like DME, the conformers vary
only moderately but markedly with surface energy. More
compact conformers are obtained with increasing surface
energy for the IS GBSW and GBMV models, while with
the IS FACTS model, the opposite behavior was observed.
Comparing 1 µs MD simulation data of PEG with these three
IS models, we found that the PEG conformers are much too
compact for IS GBSW and GBMV models with positive
surface energies. This phenomenon can be traced back to
the lack of balance of attractive vdW interactions using these
IS models with positive surface energy.

On the other hand, using these three GB models with
vanishing surface energy yields PEG conformer distributions,
which are globally realistic but may have some local
deficiencies, which are similar as observed for DME.
Adjusting the IS GBSW model to repair these deficiencies,
it turned out that, in order to balance for a lack of
solute-solvent attractive vdW interactions, the surface
energy term must vanish and the attractive part of the vdW
interactions must be reduced to 90% or alternatively, if the
vdW interactions are not reduced, to use even a slightly
negative surface energy. Hence, the influence from the
unbalanced attractive vdW interactions is for PEG and DME
even stronger than the hydrophobic effect. In addition, small
but nevertheless significant reductions of the 1-4 and 1-5
O-H Coulomb interactions and adjustments of the torsion
potentials were applied to obtain faithful local DME con-
formers. The former force field adjustments were necessary,
since the IS GBSW model may have a tendency to
overestimate Coulomb interactions at short distances. Inter-
estingly, the force field originally adjusted for DME could
be transferred to PEG unchanged.

The faithfulness of the PEG force field for an IS GBSW
model developed in this contribution allows the study of
entropy variations of PEG chain molecules under different
geometry constraints (as for instance PEG bound with one
or both ends on a wall or PEG moving through capillaries)
most efficiently. For PEG6, the CPU time per time step is
about a factor of 20 larger with the ES than with the IS
GBSW model (see the discussion in the Supporting Informa-
tion). MD simulations explore the conformational space of
PEG6 in explicit and implicit water approximately according
to a power law t-R in time t with exponent R ) 2/3. The
dynamics of the end-to-end distance distribution of PEG6
obey a stretched exponential decay law for the ES model,
while a power law was found for the IS GBSW model,
demonstrating differences in the long term behavior between
these models. Due to the lack of viscosity in the IS GBSW
model, the PEG6 conformations are explored about five times
faster with the IS GBSW model than with the ES model.
Hence, in total, exploration of the conformational space of
PEG6 is for the IS GBSW model about a factor of 100 faster
than for the ES model.
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Abstract: The ability to determine the effect of charge changes on the free energy is necessary
for fundamental studies of the electrostatic contribution to protein binding and stability. Currently,
calculations of differences in free energy for charge mutations carried out in systems with periodic
boundary conditions must include an approximate self-energy correction that can be on the
same order of magnitude as the calculated free energy change. Here, a new method for
accurately calculating the free energy change associated with any alchemical mutation,
regardless of charge, is presented. In this method, paired mutations of opposite charge exactly
cancel the self-energy term because of its quadratic charge dependence. Since the self-energy
term implicitly cancels within the method, a correction never needs to be applied, and the
statistical uncertainty associated is thereby removed. An implementation procedure is described
and applied to the free energy of ionic hydration and a charged amino acid mutation.

I. Introduction

The favorability of a chemical reaction is determined by the
net change in free energy. Experimentally, the detailed
mechanism by which these changes occur is not always
apparent. The calculation of free energy differences using
molecular simulations is a powerful tool to explore the
atomistic basis of changes in free energy.1-3 Free energy
methods can be used to determine properties such as the free
energy of solvation4-9 or to explain and predict relative
affinities in protein-ligand binding.10-16 The physical
principles that affect the free energy of binding are crucial
for rational drug design and understanding the fundamental
mechanisms of selectivity and affinity in binding. The
importance of understanding the source of free energy
differences emphasizes the need for accurate and widely
applicable free energy calculation methods.

In an experiment, the free energies of binding for proteins
A and B (∆G1 and ∆G2 from Figure 1) are measured to
determine the free energy difference (∆∆G) of binding. The

time required to compute ∆∆G from spontaneous binding
events is prohibitively long, however. Instead, ∆∆G is
calculated in free energy methods via the mutation of a
protein A into B in the bound state and in the free state (∆G3

and ∆G4 from Figure 1), where proteins A and B usually
differ by a single amino acid.1-3,17-20 This approach is
possible due to the path independence of thermodynamic
quantities, since

* Corresponding author phone: 508-856-4501; fax: 508-856-
6464; e-mail: Francesca.Massi@umassmed.edu.

† Clark University.
‡ University of Massachusetts.

Figure 1. Example of a thermodynamic cycle. ∆G1 is the free
energy of protein A binding a ligand (L), and ∆G2 is the free
energy of protein B binding L. ∆G3 is the free energy of
mutating protein A into protein B in the free state, and ∆G4 is
the free energy of mutating protein A into protein B in the
bound state.

∆∆G ) ∆G2 - ∆G1 ) ∆G4 - ∆G3
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Current free energy methods are limited by the need for
potentially large corrections to the free energy change when
mutations change the overall system charge; such corrections
arise from the treatment of electrostatic potentials.21-26 The
correction can be on the same order of magnitude as the
calculated free energy change, which makes these methods
unattractive for non-neutral mutations due to concerns about
accuracy.

The ability to determine the effect of charge changes on
the free energy is necessary for fundamental studies of the
electrostatic contribution to protein binding and stability. The
method proposed here eliminates the need to explicitly
include a correction, which removes the uncertainty in
estimating the correction. This advancement gives free energy
calculations a similar level of accuracy for any mutation,
regardless of change in charge.

II. Background

Free energy perturbation (FEP) and thermodynamic integra-
tion (TI)1-3,19,20 are used in molecular dynamics (MD) or
Monte Carlo (MC) simulations to determine free energy
differences. The formalism for TI will be discussed, but the
following arguments are equally applicable to FEP as well.

In TI, a scaling parameter λ is varied between 0 and 1,
such that, given two states A and B, state A vanishes and
state B grows as λ increases from 0 to 1. The free energy
change of the mutation of state A into state B is calculated
as

where the energy difference ∆V ) VB - VA and λ satisfies
Vλ ) (1 - λ)VA + λVB.19 MD or MC is used to calculate
the thermodynamic average 〈e-(HB-HA)〉A for each value of
λ. The values of λ must be chosen carefully, to correctly
evaluate 〈∆V〉λ, as the accuracy of ∆G depends on the
accuracy of the thermodynamic average 〈∆V〉λ.1-3

The potential energy calculated in an MD or MC simula-
tion has both bonded and nonbonded contributions, but the
electrostatic potential is particularly difficult to model both
accurately and efficiently.21 The long-range nature of the
electrostatic potential makes boundary conditions and system
size important factors in free energy calculations.27,28 Over
the past 20 years, calculations of the solvation free energy
for atomic ions using finite or periodic boundary conditions
have produced accurate results, independent of system
size.4,28-35 An important difference between the use of finite
versus periodic boundary conditions lies in the fact that, while
finite boundaries, such as finite droplets or semifinite slab
systems, have a liquid-vacuum interface, infinite periodic
boundary conditions (tin-foil) do not. For this reason,
calculations of hydration free energies of atomic ions
performed with finite boundary conditions include the
contribution of the surface potential of this interface where
bulk solvent simulations performed using periodic boundary
conditions do not.25,27,36 This interface potential is an

important contribution to the solvation free energy of charged
solutes that arises when an ion crosses the liquid-vacuum
boundary. Its contribution to the free energy of solvation is
qφlfV, where q is the charge of the solute and φlfV is the
electrostatic potential jump due to the liquid-vacuum
interface, which depends upon the solvent model used in
the simulation.37 Free energies obtained in the absence
of the interface potential are also called intrinsic free energies.
The electrostatic interface potential is essential for obtaining
accurate estimates of the free energy of hydration for ionic
molecules, and its contribution must be added to the intrinsic
free energy of hydration obtained from simulations that use
tin-foil boundary conditions.25,36 The magnitude of the
interface potential depends on the particular electrostatic
summation methodology employed, for example, whether
the P-sum (particle-based) or M-sum (molecule-based)
convention is used.25

For free energy calculations where the difference in the
free energy change, ∆∆G, is the desired quantity (Figure
1), the free energy change associated with crossing the
liquid-vacuum interface is the same for ∆G3 and ∆G4;
because the charge and the solvent model used are the same,
the contributions that the interface potential makes will cancel
in ∆∆G. For this reason, intrinsic free energy changes, which
do not include the interface potential, can be used to evaluate
∆∆G. Calculations of ∆∆G associated with the binding of
two proteins, wild-type and mutant, to the same ligand
(Figure 1) often use Ewald summation with tin-foil boundary
conditions.38-40

The electrostatic potential in the Ewald summation is ill-
defined if the system is not neutral. For charged solutes, the
Ewald formulation implicitly neutralizes the charge with a
homogeneous background charge.41 This neutralizing plasma
(NP) is a uniform charge distribution which is present
everywhere in the system, including inside the solute. An
alternative to the NP is to add explicit counterions to restore
neutrality. Adding counterions is preferable because the NP
is not an accurate physical representation of the charge
density in solution.21

There is, however, an artifact introduced when using
Ewald summation. Due to the periodicity of the Ewald
implementation, charged atoms in the central cell have an
electrostatic interaction with their periodic images, creating
an artificial self-energy term which has a system size-
dependent contribution to the free energy change.21,22 In
neutral systems, the contribution of the self-energy term to
the free energy change is zero.

In TI or FEP, if states A and B have different charges,
the self-energy term is different for each value of the scaling
parameter, λ, during the mutation of state A into state B.
For this reason, the self-energy term must then be accounted
for in the final estimate of the free energy change. Hence,
the intrinsic free energy change is equal to the calculated
free energy change (∆Gcalc) plus a correction term,

The Ewald summation with tinfoil boundaries has no
interface and is always neutral; thus, there is no contribution
from the interface potential in the free energy change

∆G ) GB - GA (1)

∆G ) ∫0

1
〈∆V〉λ dλ = ∑

i

〈∆V〉λi
∆λ (2)

∆G ) ∆Gcalc + correction (3)
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calculated by TI or FEP.36 The intrinsic free energy change
calculated by TI or FEP using tin-foil boundary conditions
can be used to obtain an estimate of ∆∆G (Figure 1), noting
that if the calculation involves a charged species, the interface
potential has the same contribution to ∆G3 and ∆G4.
However, if we are interested in accurately determining the
solvation free energy of a single ion, the contribution of the
interface potential must be added to the intrinsic free energy
change.25,36 The interface potential is a physical quantity
present in the experimental solvation free energies of charged
solutes which must be added (in the case of Ewald summa-
tion with tin-foil boundaries) to the intrinsic free energy for
accurate calculations of solvation free energies.

In contrast, the self-energy is an artifact of the infinite
periodicity in the Ewald implementation, which is always
present in non-neutral systems.21,22 For accurate estimates
of any intrinsic free energy change for charge mutations,
the self-energy must be removed from the free energy change
calculated by TI or FEP (eq 3). Self-energy artifacts in free
energy calculations arising from mutations of charged solutes
during TI or FEP have been well studied by calculating the
free energy of hydration of atomic ions.23,24,31,32,42-45

A correction has been derived for the self-energy contribu-
tion to the free energy change when using Ewald summation
with periodic boundary conditions.41 The electrostatic po-
tential (UCoul) of an infinitely periodic system is defined as

where rij is the distance between atoms i and j with charges
qi and qj, N is the total number of atoms, and φEW(r) is the
position-dependence of the electrostatic potential. �EW is the
self-energy term defined by the lattice summation used in
Ewald summation,46-48 which has the form

�EW is the electrostatic potential from the periodic images
and the neutralizing background charge in a Wigner
lattice.46-48 From eq 4, the energy difference between an
initial state with charge q0 and a final state with charge q1

and can be calculated as

for Ewald summations in a cubic lattice with side length L
and ∆q ) q1 - q0.47,48

III. Previous Work

The second term of eq 6 is the self-energy correction (CEW)
which is added to the intrinsic free energy change calculated
via TI or FEP (∆Gcalc) in eq 3, such that

Ideally, CEW is equal to and opposite of the true self-energy
(Eself), but this approximation may not be accurate. Charge
mutations are problematic even for single atom mutations,25,26

and there are far fewer examples of charge mutations10-12,49

than neutral mutations in biomolecular simulations. While
charge mutations of atomic ions have been well studied, little
has been done to advance the application to more complex
systems.

The approach often used for charge mutations is to avoid
the self-energy problem by performing two simultaneous
mutations which render the system neutral in both initial and
final states.10,12 For neutral systems, the self-energy is zero,
and no correction is needed (∆G ) ∆Gcalc). Either a residue
far from the area of interest or a neutral dummy atom in the
system can be mutated to compensate for the change in
charge. Using this approach, the free energy change of the
dual mutation is calculated (∆G1 ) ∆G1

calc); hence the free
energy change of the counter mutation must be known in
order to obtain the free energy change of the charge mutation.
Assuming the mutations are independent, ∆G1 can be written
as

where ∆GA is the free energy change of the charge mutation
and ∆GB is the free energy change of the counter mutation;
∆GA is the quantity of interest.

To find ∆GA, we must calculate ∆GB separately, but the
counter mutation is also a charge mutation, and the same
concerns regarding the self-energy apply in determining its
free energy change. However, the self-energy is dependent
on system size as well as charge (eq 6). If the system size is
sufficiently large such that the self-interactions are minimal,
then the self-energy vanishes and ∆GB ) ∆GB

calc, but at what
point the system size is sufficiently large can be difficult to
quantify a priori.

To determine whether the self-interactions are minimal,
the neutral dummy atom can be mutated into an atomic ion
for the counter mutation (mutation B), and ∆GB can be
compared to experimental free energies of hydration. As
these free energy changes can be on the order of 100 kcal/
mol, accuracy is an important concern. In order to reproduce
experimental values, self-energy corrections to ∆GB depend-
ent on the ionic charge, ionic radius, boundary conditions,
system size, electrostatic scheme, and solvent model are
needed,25,26 and the liquid-vacuum interface potential must
also be included.25,26,36 The solvation free energy can be
accurately calculated for atomic ions when these corrections
are included.21-26 However, the free energy of ionic hydra-
tion cannot be measured directly, and extrathermodynamic
assumptions37 introduce inconsistencies in the experimental
values,50-56 which makes it difficult to assess the accuracy
of ∆GB.

Another serious concern exists with no current solution.
For the self-energy to vanish, the charge mutation and the
counter mutation must be performed simultaneously to
preserve electrostatic neutrality. It is assumed that the free
energy changes of the mutations are independent (eq 8). If
they are not independent, then the free energy change of the
dual mutation becomes

UCoul ) ∑
1eiejeN

qiqjφEW(rij) +
1
2 ∑

1eieN

qi
2�EW (4)

�EW ) lim
rf0(φEW(r) - 1

r ) (5)

∆UCoul ) ∆qφEW(r) + 1
2

�EW(q1
2 - q0

2),

where �EW ) -2.837
4πεoL

(6)

∆G ) ∆Gcalc + CEW (7)

∆G1 ) ∆GA + ∆GB (8)

1886 J. Chem. Theory Comput., Vol. 6, No. 6, 2010 Morgan and Massi



where ∆GAB is the free energy change due to the interaction,
and it is impossible to find ∆GA even with an accurate
estimate of ∆GB.

The method of dual mutations is not widely used because
of concerns regarding these assumptions. In this work, we
present a method which also uses dual mutations to remove
the self-energy but does not suffer from these limitations.
In section IV, we present the theoretical rationale and three
cases for which the self-energy correction is zero. These cases
can be used to accurately find the free energy change of both
the charge mutation and the counter mutation and, addition-
ally, confirm the independence of the dual mutations. The
assumption of a sufficiently large system size is not needed;
in fact, the method presented in this work can directly
quantify at what point the system size becomes sufficiently
large to make the self-energy negligible. More importantly,
this method is directly applicable to complex systems, and
independence can be verified in any system. It is not limited
to the basic examples used to illustrate the method in section
V.C. A detailed procedure for applying the method is
presented in section V.A and demonstrated by two examples
in section V.C.

IV. Theoretical Basis

The self-energy correction (CEW) from eq 6 can be rewritten as

In this form, it becomes obvious that CEW ) 0 not only
for (q0,q1) ) (0,0), but also for (a,-a) and (a,a). Therefore,
for any mutation where |q1| ) |q0|, the self-energy correction
CEW vanishes. In the remainder of this section, we will
discuss explicitly how CEW depends on q0 and q1.

Case 1A. Consider the case when (q0,q1) ) (0, 0) as the
mutation A0f B0, where initial state Aq0, with charge q0 )
0, mutates into final state Bq1, with charge q1 ) 0. Substitu-
tion of q0 and q1 into eq 10 yields the expected result of

Case 1B. The dual mutation A0 + B0 f A+ + B- also
satisfies (q0,q1) ) (0,0); hence, CEW ) 0. If these mutations
are separated into two single mutations, (1) A0 f A+ and
(2) B0 f B-, with CEW ) CEW

(1) + CEW
(2) , then

and

CEW is no longer equal to zero if the two mutations are not
performed simultaneously.

Case 2A. As an example of the case (q0,q1) ) (a,-a),
consider the mutation A+ f B-. Substitution of q0 ) +1
and q1 ) -1 into eq 10 yields

Thus, the Ewald implementation considers the self-energy
term of the mutation A+ f B- equivalent to A0 f B0.

Thermodynamic cycles are path-independent, which makes
it possible to decompose the mutation A+ f B- into two
serial mutations, (1) A+ f N0 and (2) N0 f B-, where N0

is some neutral species. For the first mutation

and for the second mutation

CEW
(1) is equal and opposite to CEW

(2) , demonstrating that CEW

) CEW
(1) + CEW

(2) ) 0 as well after decomposition.
Case 2B. The dual mutation A+ + B0 f A0 + B- has

the same charge at the initial and final states as the mutation
A+f B-, which was shown to have CEW ) 0 in eq 14. The
mutation A+ + B0 f A0 + B- can be separated into two
single mutations (1) A+ f A0 and (2) B0 f B-, as in case
1B, but here CEW ) CEW

(1) + CEW
(2) ) 0 as in eqs 15 and 16.

Case 3A. The mutation A+f B+ corresponds to the case
(q0,q1) ) (a,a). Substituting into eq 7,

Case 3B. Separation of A+ + B0f A0 + B+ into (1) A+

f A0 and (2) B0 f B+ results in the same cancellation of
CEW

(1) and CEW
(2) as in case 2B.

Cancellation of CEW occurs for cases 2B and 3B, but not
1B, which leads to the conclusion that the direction of the
change in charge is the basis of the cancellation, while the
sign of the individual charges is irrelevant. This property is
akin to the ionic strength, as both depend on the magnitude
of the charge in the system, not the sign.

The cancellation of CEW results from the quadratic
dependence of CEW, which arises because the Coulomb
potential is quadratic in the charge. Any energy derived from
a point-charge Coulomb potential will be quadratic in the
charge, including the self-energy; hence, the self-energy will
also cancel according to the preceding argument, provided
that other dependencies in the self-energy have a negligible
effect compared to the charge dependence.25 This cancella-
tion does not occur, however, for the interface potential
(discussed in section II), which is linear in the charge.

The problems inherent to charge mutations are well
understood for atomic ions.21-26,36,57 Unfortunately, the
translation of these finding to more complex systems is not
straightforward. The work on atomic ions shows dependen-
cies in the free energy change on ionic charge, ionic radius,
boundary conditions, system size, electrostatic scheme, and
the solvent model.25 The method presented here addresses
the charge dependence, but self-energy corrections for
infinitely periodic systems still include a dependence on the

∆G1* ) ∆GA + ∆GB + ∆GAB (9)

CEW ) 1
2

�EW(q1
2 - q0

2) ) 1
2

�EW(q1 - q0)(q1 + q0) (10)

CEW ) 1
2

�EW(q1
2 - q0

2) ) 1
2

�EW((0)2 - (0)2) ) 0 (11)

CEW
(1) ) 1

2
�EW((1)2 - (0)2) ) 1

2
�EW (12)

CEW
(2) ) 1

2
�EW((-1)2 - (0)2) ) 1

2
�EW (13)

CEW ) 1
2

�EW(q1
2 - q0

2) ) 1
2

�EW((-1)2 - (1)2) )

1
2

�EW(1 - 1) ) 0 (14)

CEW
(1) ) 1

2
�EW((0)2 - (1)2) ) 1

2
�EW (15)

CEW
(2) ) 1

2
�EW((-1)2 - (0)2) ) -1

2
�EW (16)

CEW ) 1
2

�EW(q1
2 - q0

2) ) 1
2

�EW((1)2 - (1)2) ) 0 (17)
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solute radius.21,26,58 We will demonstrate in section V.C that
the dependence on solute radius is weak and does not reduce
the applicability of this method. The effect of system size
will also be discussed.

V. Application to Charge Mutations in
Proteins

The cancellation demonstrated for CEW in section IV, which
applies to the self-energy (Eself) as well, can be used to
accurately find the free energy change of both the charge
mutation and the counter mutation and, additionally, confirm
the independence of the mutations. We will use FEP to
outline and demonstrate the method, using the notation
∆GFEP ) ∆Gcalc.

Consider the change in free energy for protein PA which
begins neutral and becomes protein PB with a charge of -1
through the mutation of a residue (PA

0 f PB
-). Concurrently

performing the mutation N0 f K+, where N0 is a neutral
dummy atom and K+ is a potassium ion, renders the system
charge neutral continuously from the initial to the final state,
as in section III. This is described by the dual mutation

with free energy change ∆G1.
As shown in cases 1A and 1B, CEW ) 0 only when the

two mutations are performed simultaneously, and thus ∆G1

) ∆G1
FEP(eq 7). Assuming that the two concurrent mutations

are independent, the calculated free energy change of the
dual mutation in eq 18 (∆G1

FEP) is the combined free energy
change of the two single mutations without a contribution
from Eself such that ∆G1

FEP ) ∆GPA
0fPB

- + ∆GN0fK+ (eq 8),
where ∆GPA

0fPB
- is the free energy change of the mutation

PA
0 f PB

- and ∆GN0fK+ is the free energy change of the
mutation N0 f K+. From this calculation, we only obtain
the sum of ∆GPA

0fPB
- and ∆GN0fK+.

However, we can avoid the problems outlined in section
III by additionally performing the mutation

with free energy change ∆G2, which results in CEW ) 0
whether performed concurrently in the same FEP or sepa-
rately as shown in cases 2A and 2B. The direction of the
mutation of the potassium ion is reversed (K+ f N0),
which has the opposite free energy change (∆GK+f

FEP
N0 )

-∆GN0f
FEP

K+). The advantage is that we can calculate ∆G2
FEP

of the dual mutation in eq 19, which is also free of Eself (i.e.,
∆G2 ) ∆G2

FEP), but in this case, ∆G2
FEP ) ∆GPA

0fPB
- -

∆GN0fK+. Combining ∆G1
FEP and ∆G2

FEP, we find the
individual free energy changes ∆GPA

0fPB
- and ∆GN0fK+ as

As already discussed in case 2B, the second mutation (eq
16) can also be performed as two separate mutations, (1) PA

0

f PB
- and (2) K+ f N0, to give ∆GPA

0fPB
-

FEP and -∆GN0fK+
FEP ;

we can add ∆GPA
0fPB

-
FEP and -∆GN0fK+

FEP to obtain ∆G2. If the
two mutations are independent, this ∆G2 should be equal to
∆G2

FEP calculated from the FEP of eq 19.

By the method presented here, we can obtain ∆GPA
0fPB

-

without using a self-energy correction or needing to calculate
∆GN0fK+ separately, as has previously been necessary. The
self-energy is a simulation artifact that needs to be removed.
We do this by performing the free energy calculation on a
modified system that includes an additional ion, as illustrated
in eqs 18 and 19, to cancel the self-energy. The undesired
quantity (∆GN0fK+) can be determined and removed from
the calculated ∆G (as shown in eq 20), whereas the self-
energy term associated with the calculated free energy for
the mutation of the charged species of interest alone could
not. In this method, only self-consistency is necessary for
the atomic ion mutations; i.e., force field, solvent model,
electrostatic convention, and boundary conditions should be
identical.

The method uses the equality ∆GK+f
FEP

N0 ) -∆GN0f
FEP

K+,
which is true if the hysteresis of the forward and reverse
FEP is negligible;59 this is a reasonable assumption for
atomic ion mutations, as used here, and can be easily verified.
Moreover, the crucial assumption of independence of the two
mutations can now be confirmed, as detailed below.

In order to guarantee the independence of the two
concurrent mutations, it is necessary to position the coun-
terion at an adequate distance from the protein in order to
minimize the electrostatic interaction between the protein and
the ion. The Bjerrum length is defined as the distance at
which the Coulomb interaction between two monovalent ions
in a uniform dielectric is equal to the thermal energy, kBT.60

In water at 300 K, the Bjerrum length is ∼7 Å. This distance
can be used to approximately determine how far apart the
protein and the counterion should be placed in the simulation.
For example, for free energy calculations of proteins in water
at 300 K, a distance of ∼7 Å or greater between the surface
of the protein and the counterion will be adequate to ensure
that the electrostatic interaction between the protein and the
ion is effectively screened.

A. Procedure to Calculate the Free Energy Change
of Any Charge Mutation. In the example above, the FEP
of the protein mutation was performed three times: as the
mutations PA

0 + N0f PB
- + K+, PA

0 + K+f PB
- + N0, and

PA
0 f PB

-. To reduce the computational demand of this
method, we propose the following generalized procedure to
calculate the free energy change for any charge mutation.

Step 1: Determine ∆G of a counter mutation such as an
atomic ion (K+, in this example).

Step 2: Combine ∆GN0fK+ with ∆G2
FEP ) ∆GPA

0fPB
- -

∆GN0fK+ of the dual mutation PA
0 + K+ f PB

- + N0 to find
∆GPA

0fPB
-.

Step 3: Use the single mutations PA
0 f PB

- and K+ f N0

to confirm the independence of the mutations.

Although only the first two steps are necessary to find the
free energy change, we perform all three steps to check the
accuracy of the method and the independence of the two
mutations.

PA
0 + N0 f PB

- + K+ (18)

PA
0 + K+ f PB

- + N0 (19)

∆GPA
0fPB

- )
∆G1

FEP + ∆G2
FEP

2
and

∆GN0fK+ )
∆G1

FEP - ∆G2
FEP

2
(20)

1888 J. Chem. Theory Comput., Vol. 6, No. 6, 2010 Morgan and Massi



Step 1: Calculate the Free Energy Change of Counter
Mutations. The free energy change of the counter mutation
is a constant value and only needs to be determined once
for a given water model.61 Atomic ions are convenient for
the counter mutation because the FEP can be performed in
a short time compared to the mutation of a residue in a
solvated protein. The system size used in the simulations
should be sufficiently large to minimize interactions between
the mutating ions, which is verified in step 3.

As an example, we will calculate the free energy change
of chloride and potassium ions associated with the mutations
N0 f Cl- (∆GN0fCl-) and N0 f K+ (∆GN0fK+), using the
following three step strategy. In each step, Eself is identically
zero. The numerical results are presented in Table 1.

1-1. Calculate ∆G1
FEP ) ∆GN0fCl- + ∆GN0fK+ of the

mutation N0 + N0 f Cl-+ K+.
1-2. Calculate ∆G2

FEP ) ∆GN0fCl- - ∆GN0fK+ of the
mutation N0 + K+ f Cl- + N0.

1-3. The free energy changes ∆GN0fCl- and ∆GN0fK+

can be determined from ∆G1
FEP and ∆G2

FEP as in eq 20.
Step 2: Calculate the Free Energy Change of Any

Mutation. The free energy change of the mutation PA
0 f PB

-

(∆GPA
0fPB

-) can now be calculated using ∆GN0fK+ from step
1-3. The mutation PA

0 + K+ f PB
- + N0 is used here

because, while it would be equally valid mathematically to
use the mutation PA

0 + N0 f PB
- + K+, the first mutation

reduces the interactions between the two charged species.
2-1. Calculate ∆G2

FEP ) ∆GPA
0fPB

- - ∆GN0fK+ of the
dual mutation PA

0 + K+ f PB
- + N0.

2-2. Use ∆G2
FEP and ∆GN0fK+ (from step 1-3) to obtain

∆GPA
0fPB

- using the relationship ∆GPA
0fPB

- ) ∆G2
FEP +

∆GN0fK+.
To find the free energy change for a positive protein

mutation, use Cl- instead of K+. No special techniques are
needed to calculate the free energy change of a continuous
PA
- f PB

+ mutation, since the self-energy exactly cancels
during the mutation (as in case 2A).

Step 3: Confirm Independence of Concurrent
Mutations. We need to verify that, for the dual mutation PA

0

+ K+ f PB
- + N0, ∆G2

FEP ) ∆GPA
0fPB

- - ∆GN0fK+ with no
additional contribution from interactions between the two
mutations. To do this, we will use the FEP of (1) PA

0 f PB
-

and (2) K+ f N0 in two separate simulations of the same
system size (�EW depends on L, eq 6). Steps 3-1 and 3-2
only need to be performed once per mutation because they
are independent.

3-1. Calculate ∆GPA
0fPB

-
FEP ) ∆GPA

0fPB
- + Eself of the single

mutation PA
0 f PB

-.
3-2. Calculate ∆GN0fK+

FEP ) ∆GN0fK+ + Eself of the single
mutation N0 f K+.

3-3. If ∆GPA
0fPB

-
FEP - ∆GN0fK+ ) ∆G2

FEP (from step 2-1),
then the self-energy terms correctly cancel, and the two
mutations are independent.

Furthermore, we can determine Eself using ∆GN0fK+ from
step 1-3, since Eself ) ∆GN0fK+

FEP - ∆GN0fK+ if the muta-
tions used to determine ∆GN0fK+ are independent. Knowl-
edge of Eself can provide a metric to assess the amount of
self-interactions in the simulation, as discussed below.

B. Advantages of the Approach.
1. Increased Accuracy of the Free Energy Calculation.

The self-energy is implicitly canceled in the method pre-
sented here, which removes the need for a correction. The
self-energy correction is no longer a crucial component in
obtaining an accurate estimate of the free energy change for
charge mutations.

2. Knowledge of the Self-Energy. Eself is a measure of the
self-interactions between periodic images which depends on
system size. For accurate MD simulations using PME, the
system size should be sufficiently large so as to minimize
these interactions, but what constitutes “sufficiently large”
for long-range electrostatic interactions is not well-defined.
Eself could be used as a quantitative metric to evaluate the
system size.

3. Adaptable to Changes of Larger Magnitude. In the
examples, the change in charge is limited to (1. While it is
possible to perform a mutation such as A2-f A2+ directly,
as the extent of the change between the initial and final states
increases, it becomes more difficult to obtain an accurate
thermodynamic average for each value of λ (eq 2).1 Decreas-
ing the incremental change in λ can provide greater accuracy;
however, the charge mutation can also be divided into smaller
steps. A mutation Aq- f Aq+ can be decomposed into N
steps, where 2q/N can be less than 1 if fractional charge
increments are used. As long as the incremental charge
changes are identical in each direction, the self-energy still
vanishes in the final free energy. Any staging method that
can be applied to λ to increase the accuracy of the
calculation62 can be applied to q as well, but as q is not
necessarily linear in λ, it may be easier to apply an efficient
staging scheme as a function of q rather than λ.

4. Identity of the Counter Mutation Is IrreleVant. Since
the contribution of the counter mutation is removed, the

Table 1. Free Energy Change of the Mutations N0 f Cl- and N0 f K+

stepa ∆GFEP mutation

1-1: ∆G1
FEP ) ∆GN0→Cl� + ∆GN0→K� -162.8 ( 0.7 N0 + N0 f Cl- + K+

1-2: ∆G2
FEP ) ∆GN0→Cl� - ∆GN0→K� -21.5 ( 0.6 N0 + K+ f Cl- + N0

3-3: ∆GN0→Cl�
FEP - ∆GN0→K�

FEP -21.3 ( 0.4 N0 f Cl-

K+ f N0

∆GN0→Cl�
FEP b -91.9 ( 0.3 ∆GN0→K�

FEP b -70.6 ( 0.1
∆GN0→Cl�

c -92.2 ( 1.3 ∆GN0→K�
c -70.7 ( 1.3

a Mean and error of free energy change from FEP calculations (∆GFEP) in kcal/mol. The mutations used to obtain each ∆GFEP are listed,
see section V for details. The values of the independent mutations used to calculate the free energy change for step 3-3 are reported in
the next line (b). b Mean and error of the hydration free energy computed directly using FEP on the individual ions. c Mean and error of final
free energy change (∆G) in kcal/mol for the mutation of a neutral dummy atom (N0) into chloride (Cl-) and potassium (K+) ions calculated
from steps 1-1 and 1-2 according to eq 20.
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accuracy of the estimated free energy change of the counter
mutation does not affect the overall accuracy of the method.
Moreover, unphysical mutations, such as fractional charges
or artificial ions, can be used.

C. Demonstration of the Method. The method described
above is illustrated here by several examples. FEP calcula-
tions were done with the molecular dynamics package
NAMD 2.763 using the CHARMM 2764 force field and
explicitly solvated with the TIP3P water model. Each FEP
was repeated five times to give the results in Tables 1-3.
All simulations use PME with tin-foil boundary conditions.
The free energy changes reported below are the intrinsic free
energy change. The particular choice of boundary conditions
affects the results, as discussed in section II. While the free
energy change associated with the dual mutation reaction
illustrated in eq 18 has no contribution from the surface
potential term, the free energy change associated with the
reaction illustrated in eq 19 does. If single ion solvation free
energies are the goal of the calculation, then the contribution
of the interface potential jump must be included.26,36,57

1. Free Energy Change of Atomic Ion Mutations. The free
energy changes for N0f Cl- and N0f K+ were calculated
according to the procedure in step 1. N0 is a neutral dummy
atom with the following Lennard-Jones parameters: ε ) 0
and σ ) 0. As a practical matter, before charging and
alchemical mutation to the target species, the N0 state was
transformed into an argon-like particle with the CHARMM
2764 Lennard-Jones parameters for sodium (and zero charge).
The free energy associated with insertion of this argon-like
particle was 2.0 ( 0.2 kcal/mol. For concurrent dual
mutations, the two ions were fixed in the simulated water
box at a distance L/2 apart in x, y, and z (L ) 30 Å). When

performing single mutations, the ion was fixed at the center
of the simulation box (L ) 30 Å). The results from each
step are listed in Table 1.

The free energy changes obtained from the concurrent dual
mutations of steps 1-1 and 1-2 using eq 20 are ∆GN0fK+

) -70.7 ( 1.3 kcal/mol and ∆GN0fCl- ) -92.2 ( 1.3
kcal/mol (Table 1, step 1-3). ∆G2

FEP ) -21.5 ( 0.6 kcal/
mol from the concurrent dual mutations (Table 1, step 1-2),
which agrees well with ∆GN0fCl-

FEP - ∆GN0fK+
FEP ) -21.3 (

0.4 kcal/mol from the hydration free energies computed
directly using FEP on the individual ions (Table 1, step 3-3),
confirming that the mutations are independent.

The hydration free energy of the neutral salt, computed
from concurrent dual mutations, ∆G1

FEP ) ∆GN0fCl- +
∆GN0fK+ ) -162.8 ( 0.7 kcal/mol is in excellent agree-
ment with that computed using separate FEP computations,
∆G1

FEP ) ∆GN0
FEP
fCl- + ∆GN0

FEP
fK+ ) -162.5 ( 0.4 kcal/

mol. These hydration free energies agree with the results
for ∆GN0fK+ and ∆GN0fCl- from previous work using the
CHARMM 27 force field and the TIP3P water model.42,57,61

The good agreement between the computed and experimental
values for the hydration free energy of the neutral salt
(potassium chloride) of -160.4 kcal/mol by Tissandier et
al.53 (corrected for the typographical errors detailed by Kelly
et al.65) is a measure of the quality of, and compromises inherent
in, the ion parametrization with the TIP3P model; any discrep-
ancy can be attributed to the limitations of the model and/or
parametrization. Although the concurrent dual mutation method
is intended for applications where theoretical treatments of the
self-energy correction are not as easily applied, such as
mutations in biomolecules, this exercise serves as proof-of-
concept.

2. Effect of Radius Dependence on Free Energy
Change. Analytical self-energy corrections for infinitely peri-
odic systems also include a dependence on solvent permittivity
and solute radius.21,26,58 The radius-dependent correction is
intended to account for finite solute size and finite solvent
permittivity in a periodic system.21,58 It is defined as

Given �′EW ) -2.837 and εi ) 1 (internal permittivity),
in the limit of εsf ∞ (solvent permittivity) and Rf 0 (hard-
sphere radius), ∆∆Gsolv f CEW. The radius for atomic ions
is defined by the excluded volume, which can be ap-
proximated as the Lennard-Jones radius or calculated empiri-

Table 2. Free Energy Change of the Mutations D- f S0 and N0 f K+

stepa ∆GFEP mutation

1-1: ∆G1
FEP ) ∆GD�→S0

FEP - ∆GN0→K�
FEP 82.5 ( 1.3 D-+N0fS0+K+

1-2: ∆G2
FEP ) ∆GD�→S0

FEP + ∆GN0→K�
FEP 224.2 ( 0.2 D-+K+fS0+N0

3-3: ∆GD�→S0
FEP - ∆GN0→K�

FEP 81.8 ( 0.7 D-fS0

N0fK+

∆GD�→S0
b 153.4 ( 1.5 ∆GN0→K�

b -70.9 ( 1.5

a Mean and error of free energy change from FEP calculations (∆GFEP) in kcal/mol. The mutations used to obtain each ∆GFEP are listed,
see section V for details. b Mean and error of final free energy change (∆G) in kcal/mol for the mutation of aspartic acid (D-) into serine
(S0) and a neutral dummy atom (N0) into a potassium ion (K+).

Table 3. Self-Energy and Calculated Corrections Terms
(kcal/mol)a

L (Å) ∆GFEP Eself CEW
b ∆∆Gsolv

c

K+

29.16 -70.6 ( 0.1 0.1 ( 1.4 -16.2 -0.6
18.93 -69.9 ( 0.2 0.9 ( 1.5 -24.9 -1.6
11.13 -65.4 ( 0.2 5.3 ( 1.5 -42.3 -6.6

Cl-

29.11 -91.9 ( 0.3 0.3 ( 1.6 -16.2 -0.8
18.97 -90.8 ( 0.1 1.4 ( 1.4 -24.8 -2.4
10.78 -88.0 ( 0.2 4.2 ( 1.5 -43.7 -11.2

a Mean and errors for the free energy calculated via FEP
(∆GFEP) and the self energy (Eself) for the mutation of a neutral
dummy atom (N0) into a potassium (K+) or chloride (Cl-) ion for
three system sizes (L). The error of Eself is the error of ∆GFEP and
∆G from Table 1. b CEW is dependent on system size and charge
(eq 10).41 c ∆∆Gsolv is dependent on system size, charge, and
solute radius (eq 21).21

∆∆Gsolv ) -1
2

q2

4πε0L
(εi

-1 - εs
-1){�′EW + 4π

3 (R
L )2

-

16π2

45 (R
L )5} for R e

1
2

L (21)
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cally from radial distribution functions.57 Solvent permittivity
is a constant for a given water model.

The radius dependence in eq 21 could pose an issue for
the cancellation of Eself in cases where the sizes of the two
mutations are dissimilar, such as an atomic ion and a residue
within a protein. As a test, step 1 was applied to the mutation
D- + N0 f S0 + K+, where the mutation of aspartic acid
(D, q ) -1) to serine (S, q ) 0) is denoted as D- f S0

with free energy change ∆GD-fS0. Note that the direction of
the change in charge is reversed for the negative species from
the example (N0 f Cl-), which changes the procedure
slightly. The mutation N0f K+ has the free energy change
∆GN0fK+, as defined previously. The zwitterionic forms of
D- and S0 were used, and only the position of K+ was fixed
in the simulation box (L ) 40 Å). The results of each step
are listed in Table 2.

We find ∆GD-fS0 ) 153.4 ( 1.5 kcal/mol and ∆GN0fK+

) -70.9 ( 1.5 kcal/mol (Table 2, step 1-3). ∆G1
FEP) 82.5

( 1.3 kcal/mol of the concurrent dual mutation (Table 2,
step 1-1) is in good agreement with ∆GD-fS0

FEP +
∆GN0fK+

FEP ) 81.8 ( 0.7 kcal/mol from the combined single
mutations (Table 2, step 3-3); therefore the mutations are
independent. To calculate ∆GD-fS0 using step 2, subtract
∆GN0fK+ (Table 1, step 1-3) from ∆G1

FEP (Table 2, step
1-1) to obtain ∆GD-fS0 ) 153.2 ( 2.6 kcal/mol. This
result is in agreement with step 1-3, where ∆GD-fS0 )
153.4 ( 1.5 kcal/mol (Table 2, step 1-3).

∆GN0fK+ obtained from simulations where the second
mutation is either an atomic ion of similar radius (Cl-) or a
larger amino acid are nearly identical (-70.7 ( 1.3 versus
-70.9 ( 1.5 kcal/mol, respectively). The self-energy con-
tributions to ∆GN0fCl- and ∆GD-fS0 must be the same to
produce such similar results; therefore, the self-energy
depends on neither the radius nor the identity of the ionic
species, to within the error. This result highlights a strength
of the method presented in this work. ∆∆Gsolv depends on
R/L; hence, the effect of the difference in the radii should
be minimal for sufficiently large L. However, the radius of
a complex molecule is not usually well-defined. In addition,
eq 21 was derived for a hard sphere, as is appropriate for
atomic ions, but the accuracy of the correction for other
solutes is unknown. Fortunately, the self-energy cancels
implicitly in this method, and the radius is not needed to
calculate the free energy change.

3. Comparison of Eself to Correction Terms. The FEP of
the single mutations calculated for step 3 yields ∆G + Eself.
Having previously obtained the free energy change, we can
calculate the self-energy and compare it to theoretical
corrections such as CEW and ∆∆Gsolv (Table 3).

The self-energy was calculated for N0 f K+ and N0 f
Cl- in system sizes of L ) 30, 20, and 11 Å (exact values
are given in Table 3). Eself was calculated by subtracting the
free energy changes (Table 1) from ∆GFEP of the single ion
mutations. CEW is defined by eq 10, and ∆∆Gsolv was
calculated from eq 21 using εs ) 78 and R ) 3.53 and 4.54
Å for K+ and Cl-, respectively, as defined by the CHARMM
27 force field.64

The system sizes are not identical as the FEP calculations
are performed in the isobaric-isothermal ensemble; however,

Eself and the theoretical correction terms do not appear to be
overly sensitive to minor differences in the system size. The
self-energy terms of the two ions are comparable for each
system size, confirming that Eself does cancel.

CEW greatly overestimates the value of the self-energy
term. For L ) 30 Å, Eself ) 0.1 and 0.3 kcal/mol for N0 f
K+ and N0 f Cl-, respectively, while CEW ) -16.2 kcal/
mol for both ions (Table 3). This discrepancy worsens as
the system size decreases. ∆∆Gsolv is slightly higher than
Eself, but within the error, except for N0 f Cl- when L )
11 Å (Table 3). The similarity of Eself and ∆∆Gsolv indicates
that additional dependencies are likely small contributions
to the self-energy. At L ) 30 Å, we consider Eself to be a
negligible contribution to the free energy change for these
mutations.

The relative effect of these corrections on the final free
energy change can be seen by adding CEW or ∆∆Gsolv to
∆GFEP (Table 4). For ∆GN0fCl-

FEP with L ) 30 Å, the final
free energy changes are ∆GN0fCl- ) -108.1 and -92.7
kcal/mol for ∆GN0fCl-

FEP + CEW and ∆GN0fCl-
FEP + ∆∆Gsolv,

respectively. Table 4 shows a system size dependence in
∆GN0fCl- calculated using the theoretical correction terms
CEW and ∆∆Gsolv. For L ) 11 Å, ∆GN0fCl- ) -131.7 and
-99.2 kcal/mol for ∆GN0fCl-

FEP + CEW and ∆GN0fCl-
FEP +

∆∆Gsolv, respectively. Residual dependence on system size
is an indication of inaccuracy in these correction terms.

The system size dependence of the method presented here
can be evaluated by recalculating step 3-3 in Table 1 using
different system sizes. In this step, the independence of the
mutations is evaluated by comparing the difference in the
free energy changes calculated either concurrently or indi-
vidually. Above, we found ∆G2

FEP) -21.5 ( 0.6 kcal/mol
for the concurrent dual mutation and ∆GN0fCl-

FEP -
∆GN0fK+

FEP ) -21.3 ( 0.4 kcal/mol for the combined single
mutations (L ) 30 Å). If instead we calculate
∆GN0fCl-

FEP - ∆GN0fK+
FEP using ∆GFEP of L ) 20 Å and 11 Å,

we find ∆GN0fCl-
FEP - ∆GN0fK+

FEP ) -20.9 ( 0.3 and -22.6 (
0.4 kcal/mol, respectively (Table 4). The cancellation of the
self-energy in ∆GN0fCl-

FEP - ∆GN0fK+
FEP requires that the two

system sizes be equal. From Table 3, it is evident that this
is not always the case in the isothermal-isobaric ensemble,
which is an additional source of error not included in Table

Table 4. Evaluation of System Size Dependence via Free
Energy Changes (kcal/mol)a

L (Å)
∆GN0→Cl�

FEP +
CEW

b
∆GN0→Cl� +
∆∆Gsolv

c
∆GN0→Cl�

FEP -
∆GN0→K�

FEP d

29.11 -108.1 ( 0.3 -92.7 ( 0.3 -21.3 ( 0.4
18.97 -115.6 ( 0.1 -93.2 ( 0.1 -20.9 ( 0.3
10.78 -131.7 ( 0.2 -99.2 ( 0.2 -22.6 ( 0.4

a All values are derived from Table 3. The errors are from the
free energy calculated via FEP (∆GFEP) for a neutral dummy
atom (N0) into a potassium ion (K+) or chloride ion (Cl-) for
three system sizes (L). b ∆GN0→Cl�

FEP + CEW is the final free energy
change as estimated by the theoretical correction terms from eq
10.41 No contribution of CEW and ∆∆Gsolv to the error is inclu-
ded. c ∆GN0→Cl� + ∆∆Gsolv is the final free energy change as
estimated by the theoretical correction terms from and eq 21.21

No contribution of CEW and ∆∆Gsolv to the error is inclu-
ded. d ∆GN0→Cl�

FEP - ∆GN0→K�
FEP is step 3-3 from Table 1 recalculated

using ∆GFEP from each system size.
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4. For large system sizes, this error is minimal, but for L )
11 Å, the difference is likely not negligible. Nevertheless,
there is very little dependence on system size in the results
from the method presented in this paper.

4. Efficiency. The efficiency of the method presented in
this work is similar to current calculations for neutral
mutations, as FEP of atomic ions (step 1) is computationally
inexpensive compared to FEP in a biomolecule required for
any method (step 2). If parallel computing resources are
available, this method adds little additional wall-clock time.
All of the simulations, including the optional calculations
for verifying independence (step 3), can be run in parallel.

In FEP calculations performed with biomolecules, the
system sizes are often much larger than those used here. The
two single mutation FEP simulations must be performed
using the same system size, which should be chosen to
minimize nonbonded interactions between the larger solute
and its periodic images. However, since the verification step
(step 3) is independent of system size, the single mutation
FEP simulations are not required to use the same system
size as the dual mutation FEP simulation. This could be of
particular use if interactions between the two mutations are
an issue; if the dual mutation FEP needs to be rerun using a
larger system size, the smaller single mutation FEP simula-
tions can still be used to check for independence. In general,
smaller system sizes can be used for the single mutation FEP
simulations to make the verification of independence less
computationally costly, provided that the system size is
reasonable.

The ability to divide large charge mutations into smaller
steps allows the staging methods often implemented for λ
to improve accuracy62 to be applied to q as well. While this
does not increase the computational efficiency of the final
calculation, if q is not linear in λ, it may be easier to find an
optimal staging scheme for q than for λ.

We have shown that the method presented in this work
allows the free energy change for charge mutations to be
determined without the limitations of current approaches. The
mutations were confirmed as independent in the cases
demonstrated here, validating the use of concurrent dual
mutations. We find that the self-energy is primarily dependent
on charge; other dependences in the self-energy, such as
radius, are seen to have little affect. We also find that, at L
) 30 Å, the system is sufficiently large to minimize the self-
interactions for these mutations.

VI. Summary and Conclusions

The dependence of the self-energy on both charge and system
size has been a barrier to accurately calculating the free
energy change for charge mutations by FEP or TI using the
Ewald summation for electrostatics. The method presented
here removes the need for precise knowledge of the self-
energy contribution to the free energy introduced by the
periodicity in the Ewald implementation.

The method presented in this work translates the results
from studies of charge mutations in atomic ions to more
complex systems. The solvation free energy of atomic ions
can be accurately obtained, but it requires analytical correc-
tions which are not well-defined, or well studied, for

multiatom mutations. The method presented in this work is
general in its implementation but will be most useful for
calculations of binding free energy differences, ∆∆G, of
biomolecules, as illustrated in Figure 1. Unlike current
methods used for charge mutations in biomolecules,10-12,49

it does not require experimental data to confirm the accuracy
of the self-energy correction. It is self-contained and requires
only self-consistency in the simulation parameters. Moreover,
the assumptions made here can be tested for any system.

The uncertainty of the self-energy correction is removed
because the self-energy terms implicitly cancel with the
method presented here. Furthermore, the self-energy can be
determined using the free energy change, and self-energy
dependencies can be tested for any complex system. The
self-energy can provide a quantitative metric for the extent
of self-interactions in MD simulations that use the Ewald
implementation.

Electrostatic interactions are the source of all nonbonded
interactions in the physical world. The ability to calculate
the free energy of perturbation associated with a charge
differential without the uncertainty associated with large
corrections has many important applications. Mutation stud-
ies can be done computationally for any residue, regardless
of charge. The effect of ions on DNA, RNA, and ion
channels can be directly studied, and the effect of charge on
ligand binding can be isolated. The ability to decompose a
thermodynamic reaction into intermediate steps allows small
increments of charge to be used, which enables more general
studies to explore the effect of electrostatic interactions on
protein dynamics and binding as a function of charge.
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Abstract: We investigate the effect of Hartree-Fock range-separation on the calculation of
magnetic exchange couplings in a set of nine bimetallic transition-metal complexes containing
3d elements (V, Cr, Mn, and Cu). To this end, we have compared magnetic exchange couplings
calculated as self-consistent energy differences using two global hybrid functionals, B3LYP
(Becke 3-parameter exchange and Lee-Yang-Parr correlation) and PBEh (hybrid Perdew-
Burke-Ernzerhof) with the short-range separated HSE (Heyd-Scuseria-Ernzerhof) and the
long-range corrected LC-ωPBE. Our results show that, although there is no clear superiority of
any of these functionals when compared with experimental data, the LC-ωPBE provides a better
description of the magnetization on the metallic centers, yielding self-consistent solutions that
mimic more closely a Heisenberg-like behavior.

Introduction

One of the most interesting properties of molecular com-
plexes containing transition-metal atoms is their ability to
behave as single-molecule magnets. Many applications have
been proposed exploiting these molecular-size magnets, such
as quantum computation units and high-density data storage.1

The magnetic behavior of these systems has been probed
using a variety of experimental techniques. In all cases, an
empirical model based on the Heisenberg spin Hamiltonian
was found to fit the experimental data very well, provided
that the parameters in the model Hamiltonian are chosen
properly. Thus, modeling the magnetism of single-molecule
magnets can be reduced to analyzing simple statistical models
based on a Heisenberg spin Hamiltonian that includes both
external parameters (temperature, applied magnetic field, etc.)
and internal parameters (magnetic exchange couplings,
magnetic anisotropy, etc.).

Internal parameters for a particular molecular magnet can
be obtained from first-principles electronic structure calcula-

tions by mapping the molecular energies to the energies of
the Heisenberg spin Hamiltonian.2-4 In particular, magnetic
exchange couplings, J, can be obtained considering the
isotropic Heisenberg Hamiltonian

where Si and Sj are the (localized) spin operators associated
to each magnetic center. The theoretical prediction of
magnetic exchange couplings depends mainly on two factors:
the approach employed in this mapping and the choice of
the electronic structure method. Because of the size of most
systems of interest, density functional theory (DFT) repre-
sents the most viable electronic structure method to this end.

Several approaches have been proposed for extracting J
couplings from DFT energies. According to the spin-
projected (SP) approach,2 the energies of a two-center
complex A and B can be related to the J coupling as

while in the non(spin)projected (NP) approach,5 the energies
of a two-center complex SA and SB can be related to the J
coupling as
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where SB e SA. In eqs 2 and 3, EHS is the energy of the
high-spin state and ELS is the energy of the low-spin (broken-
symmetry) state. Equations 2 and 3 can be straightforwardly
generalized to a set of equations for complexes with multiple
magnetic centers.6,7 While the SP and NP methods are fairly
popular, other methods have been proposed in the literature
such as Nishino’s approach8 and the constrained-DFT
approach of Rudra et al.9,10

It has been shown that for the calculation of magnetic
exchange couplings, hybrid functionals perform the best
among several realizations of density functionals available
in the literature.3 In particular, Ruiz et al. have shown that
the broken-symmetry approach in combination with the
hybrid B3LYP functional11,12 yields the best exchange
couplings between several popular density functionals when
compared to experimental values.5 Valero et al. have recently
shown that the M06 realization of the generalized-gradient
approximation (GGA) functional yields exchange couplings
as accurate as B3LYP.13 It has been suggested that the
presence of self-interaction error (SIE) in approximate density
functionals mimics in some way nondynamical electron
correlation contributions to the calculated energies.14,15 Since
the use of the NP approximation also accounts for electron
correlation that is not included in the spin-projected ap-
proximation, it was argued by Ruiz et al. that using the
broken-symmetry method in combination with a self-
interaction free functional should give accurate exchange
couplings,16 although this led to some controversy.17-19

Several authors have argued that eq 2 represents a more
physically meaningful mapping between the Heisenberg and
DFT models20-24 than eq 3 and that the accuracy of B3LYP
combined with eq 3 is fortuitous. Therefore, a density
functional that is able to reproduce magnetic exchange
couplings in combination with eq 2 would be desirable.

A new generation of density functionals that incorporate
screened Hartree-Fock (HF) exchange became recently
available. Such is the case of the Heyd-Scuseria-Ernzerhof
(HSE) functional,25-27 which includes a portion of short-
range HF exchange in its definition that makes it suitable to
treat electronic localization effects and, at the same time,
computationally more efficient than traditional (global)
hybrids. The LC-ωPBE,28 which incorporates long-range HF
exchange to partly remove SIE, provides a not exactly one-
electron, but most often “many-electron self interaction-free”
functional.29 Rivero et al. have analyzed the reliability of
these range-separated hybrid functionals for describing
magnetic exchange interactions using a reference database
proposed by Valero et al.13 In view of these developments,
it is important to investigate the performance of these new
models for the prediction of magnetic parameters. It is the
purpose of this work to compare magnetic exchange cou-
plings calculated with the range-separated HSE and LC-
wPBE with those calculated with global hybrid functionals.

Methodology

All magnetic exchange couplings were calculated from self-
consistent field (SCF) energy differences for the HS and LS

states, as given by eqs 2 and 3 for the SP and NP approaches,
respectively. The Gaussian Development Version was used
through this work.30 The low-spin solution was obtained from
an initial SCF guess generated by flipping the local spin-
density in one of the metal centers of the high-spin solution.
We have verified that the SCF solutions approximately
represent the target Heisenberg solutions by comparing
Mulliken atomic spin densities for each particular case. All
calculations converged the SCF procedure to an accuracy
of 10-8 hartree ) 0.27 µeV in the total energy. An atom-
centered numerical integration grid of 99 radial and 590
angular points (grid ) ultrafine keyword in Gaussian) was
employed in all cases. Geometrical structures were taken
from experimental crystallographic data. All calculations
were carried out using the Ahlrich’s double-� valence plus
polarization Gaussian basis for atoms other than transition
metals31 and all-electron Ahlrich’s triple-� valence plus
polarization for the metal centers.32 Molecular data (spin
configurations, total charge, and spin multiplicities), geo-
metrical structures, and complete basis sets are available as
Supporting Information.

To assess the effect of range separation in density
functionals we have chosen a set of nine bimetallic transition-
metal complexes containing 3d elements (V, Cr, Mn, and
Cu). Five of them (compounds 1-5) present antiferromag-
netically coupled magnetic centers (JAB < 0), while the
remaining four (compounds 6-9) are ferromagnetically
coupled (JAB > 0). These systems have been employed by
Rudra et al. to assess the performance of a proposed
methodology to evaluate magnetic exchange couplings based
on constraint DFT.9 Here we have evaluated magnetic
exchange couplings for these 9 complexes using the global
hybrid functionals B3LYP and PBEh,33-35 and the range-
separated hybrid functionals HSE and LC-wPBE.

Results and Discussion

In Table 1, we show our results for the magnetic exchange
couplings. Experimental values and their corresponding
reference are also shown. For all four hybrid functionals,
exchange couplings evaluated using the NP approach are in
slightly closer agreement with the available experimental
data. Our NP and SP results for the B3LYP functional are
in line with those of Rudra et al.9 (not shown in Table 1),
although the calculated couplings are somewhat different.
We attribute this discrepancy to the different basis set
employed by Rudra et al. and this work.

For all antiferromagnetically coupled complexes (com-
pounds 1-5), the PBEh functional yields a weaker coupling
between magnetic centers as compared to B3LYP, while the
trend for ferromagnetically coupled complexes is not uni-
form. On the other hand, the effect of truncating the long-
range HF exchage in the HSE functional effectively reduces
ferromagnetic exchange couplings (compounds 6-9) and
increases antiferromagnetic couplings (compounds 1-5), as
evidenced by comparing HSE and PBEh results. Contrarily,
the LC-ωPBE functional produces the opposite effect in most
cases, with the exception of the MnIIIMnIV (compound 5)
and CuIICrIII (compound 8) complexes. In particular, PBEh
and HSE show a very large deviation for the latter complex

ELS - EHS ) (4SASB + 2SB)JAB (3)
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compared with the B3LYP and LC-ωPBE functionals and
experimental results. In most cases, HSE and PBEh exchange
couplings differ a few cm-1, with the exception of compound
9 where the difference is about 14 cm-1. This implies that
the truncation of the long-range HF exchage in the HSE
functional has little impact on the calculated magnetic
exchange couplings.

Overall, B3LYP and LC-ωPBE provide a very good
agreement with experimental values when the NP ap-
proximation is employed to map the DFT energies to the
model Hamiltonian energies. This has been noted by different
authors,3,13,16 although there is some discrepancy about the
physical grounds of this approach.18,36 LC-ωPBE and
B3LYP yield very similar mean absolute errors (MAEs),
although individual magnetic exchange couplings are some-
what different. Using the open-shell database of Valero and
co-workers,13 Rivero et al. have shown that the HSE
functional is able to provide better magnetic exchange
couplings when the SP instead of the NP approximation is
used.37 The reference database employed in that work
consisted of 10 systems with two spin 1/2 magnetic centers:
the H-He-H model system, two first-row compounds, and
seven Cu-Cu complexes. Our results, however, do not show
such conclusive evidence: Magnetic exchange couplings
calculated with PBEh, HSE, and LC-ωPBE are comparable
to those calculated with B3LYP, being the latter slightly
better. However, if complex 8 is excluded, the B3LYP MAE
in Table 1 is the largest of all the functionals included in
this work. Notably, in this case, PBEh and HSE provide the
best agreement with the experimental data, although all four
functionals give close MAEs.

It should be pointed out that it is not the purpose of this
work to assess the performance of different functionals
against experimental data. Instead, we aim to compare the
effect of range-separation on the calculation of magnetic
exchange couplings. The comparison of our results with
existing assessments suggest that larger test sets need to be
employed to assess the performance of different methods
for magnetic exchange couplings.

An implicit assumption in the evaluation of magnetic
exchange couplings by equating the DFT and Heisenberg
energy differences is that the DFT model is able to mimic
the behavior of the Heisenberg model (eq 1), which implies

that the magnetization at each center is the same for both
spin configurations. Although this concept is difficult to
quantify, a masure of the deviation of the DFT system from
an ideal Heisenberg model can be given by the parameter

where SA, B
HS, LS are the local magnetic moments (or integrated

spin densities) at magnetic centers A and B for the HS and
LS configurations. The parameter η is zero for the ideal case
where both the HS and LS spin states hold the same local
magnetization at both, A and B, magnetic centers. It should
be commented that in the approximation proposed by Rudra
et al.9,10 the parameter η is exactly zero because of the
constraint imposed in the local magnetic moements. Although
there are several methods for partitioning the density and
spin density into atomic contributions, we have chosen
Mulliken population to estimate SA, B

HS, LS since it is the most
widely used method, although other partitioning methods
based on local projectors38-41 might be more suitable for
large systems with many magnetic centers. Importantly, since
the parameter η is based on differences of atomic spin
populations between the LS and HS states, one would not
expect that the values of η obtained using other population
methods will follow the same trend for different density
functionals. In Table 2 we show calculated values of η for
all the complexes and density functionals employed in this

Table 1. Magnetic Exchange Couplings (in cm-1) Calculated with Different Hybrid Density Functionalsa

B3LYP PBEh HSE LC-ωPBE ref 9

complex SP NP SP NP SP NP SP NP C-DFT exptl

(1) CuII-CuII -84.2 -42.1 -59.5 -29.8 -63.5 -31.8 -40.3 -20.1 -16 -30.9b

(2) CuII-CuII -101.8 -50.9 -79.0 -39.5 -83.4 -41.7 -58.2 -29.1 -44 -37.4c

(3) MnII-CuII -36.4 -30.4 -27.8 -23.2 -29.7 -24.8 -18.5 -15.4 -128 -15.7d

(4) VIV-VIV -100.2 -50.1 -82.3 -41.1 -87.4 -43.7 -62.4 -31.2 -83 -107e

(5) MnIII MnIV -171.0 -136.8 -138.0 -110.4 -142.5 -114.0 -152.7 -122.1 -128 -110f

(6) CuII-CuII 103.5 51.7 140.6 70.3 133.8 66.9 247.7 123.8 112 84g

(7) CuII-CuII 131.9 66.0 119.9 60.0 119.2 59.6 120.2 60.1 57 57h

(8) CuII CrIII 14.6 11.0 170.9 128.2 169.1 126.8 8.1 6.1 23 18.5I

(9) CuII MnIII 75.6 60.5 28.8 23.1 10.8 8.7 46.9 37.5 75 54.4I

MAE 36.2 19.8 48.1 26.1 50.1 28.4 40.6 19.9 25.4
MAE excluding (8) 40.2 21.3 35.0 15.6 37.5 18.4 44.3 20.9

a MAE indicates the mean absolute error compared with experimental data. Magnetic exchange couplings taken from ref 9 are based on
constraint-DFT (C-DFT) calculations. b Taken from ref 43. c Taken from ref 44. d Taken from ref 45. e Taken from ref 46. f Taken from ref 47.
g Taken from ref 48. h Taken from ref 49. I Taken from ref 50.

Table 2. Deviation from the Heisenberg Model As Given
by the Parameter η(× 10-3) as Defined in Equation 4a

complex B3LYP PBEh HSE LC-ωPBE

(1) CuII-CuII 1.67 2.69 2.75 2.97
(2) CuII-CuII 10.10 7.24 7.90 3.77
(3) MnII-CuII 9.52 7.41 7.81 5.96
(4) VIV-VIV 4.23 2.93 3.19 2.21
(5) MnIII MnIV 22.05 16.85 17.35 16.02
(6) CuII-CuII 3.96 6.39 6.07 11.09
(7) CuII-CuII 4.73 4.56 4.56 4.15
(8) CuII CrIII 26.56 28.16 84.90 10.61
(9) CuII MnIII 40.98 14.15 18.65 0.29

a Smaller values of η indicate lesser variation of the local
magnetization at the metallic centers between both high-spin and
low-spin solutions.

η ) | SA
HSSB

HS + SA
LSSB

LS

2(SA
HSSB

HS - SA
LSSB

LS) | (4)
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work. In all cases, SA, B
HS, LS include atomic spin densities of

the metallic centers and surounding atoms with non-
negligible magnetization. Overall, the parameter η is smaller
for LC-ωPBE followed by PBEh, HSE, and B3LYP, in that
order. This indicates that among the four hybrid functionals
utilized in this work, B3LYP does the worst job in mimicking
the Heisenberg behavior of all nine bimetallic complexes.
This is in line with the observation of Rivero et al. that LC-
ωPBE and HSE enhance the localization of the spin-density
with respect to B3LYP, improving the description of spin
localization (and hence magnetic exchange couplings) in
these type of systems.37,42

Conclusions

We have investigated the effect of Hartree-Fock range-
separation on the calculation of magnetic exchange couplings
by comparing magnetic exchange couplings using two global
hybrid functionals, B3LYP and PBEh, with the short-range
separated HSE and the long-range corrected LC-ωPBE in a
test set of nine bimetallic transition-metal complexes con-
taining 3d elements. Although our results show that there is
no clear superiority of any of these functionals when
comparing with experimental data, the LC-ωPBE provides
a better description of the magnetization on the metallic
centers, yielding self-consistent solutions for the high-spin
and low-spin states that mimic more closely a Heisenberg-
like behavior. The comparison of our results with existing
assessments involving these same functionals separately
suggest that larger test sets including all these functionals
need to be employed to assess their performance for the
prediction of magnetic exchange couplings.
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Abstract: The binding of ligands to protein receptors with high affinity and specificity is central
to many cellular processes. The quest for the development of computational models capable of
accurately evaluating binding affinity remains one of the main goals of modern computational
biophysics. In this work, free energy perturbation/molecular dynamics simulations were used to
evaluate absolute and relative binding affinity for three different antidepressants to a sodium-
dependent membrane transporter, LeuT, a bacterial homologue of human serotonin and
dopamine transporters. Dysfunction of these membrane transporters in mammals has been
implicated in multiple diseases of the nervous system, including bipolar disorder and depression.
Furthermore, these proteins are key targets for antidepressants including fluoxetine (aka Prozac)
and tricyclic antidepressants known to block transport activity. In addition to being clinically
relevant, this system, where multiple crystal structures are readily available, represents an ideal
testing ground for methods used to study the molecular mechanisms of ligand binding to
membrane proteins. We discuss possible pitfalls and different levels of approximation required
to evaluate binding affinity, such as the dependence of the computed affinities on the strength
of constraints and the sensitivity of the computed affinities to the particular partial charges derived
from restrained electrostatic potential fitting of quantum mechanics electrostatic potential. Finally,
we compare the effects of different constraint schemes on the absolute and relative binding
affinities obtained from free energy simulations.

I. Introduction
In last five years we have seen rapid and amazing progress
in structural studies of membrane transporters. Several crystal
structures for sodium-coupled membrane transporters have
been solved at high resolution with and without ligand
bound.1-4 One of the first complexes of a membrane
transporter with a bound drug was obtained for the
LeuT-andipressant complex. The structure, solved in a fully
occluded state, contains bound ions, the transported solute,

and one of three tricyclic antidepressants (TCAs). LeuT is a
bacterial leucine transporter, belonging to the large family
of neurotransmitter sodium symporters (NSS).1 Transporters
of this family are involved in the termination of synaptic
transmission through the reuptake of neurotransmitters
(including glycine, glutamate, serotonin, dopamine, and many
others) from the synapse into the cytoplasm of neurons and
glia. Dysfunction of these membrane transporters in mam-
mals has been implicated in multiple diseases of the nervous
system.5 Depression, one of the most prevalent psychiatric
disorders, is directly associated with perturbation of sero-
tonergic neurotransmission.6 Antidepressants including flu-
oxetine (Prozac) and TCAs are known to bind membrane
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transporters and block transport activity. Thus, understanding
the mechanism of drug binding to these membrane transport-
ers could possibly help the development of new therapeutics
for depression. Recently, the crystal structures of LeuT bound
to a variety of TCAs (clomipramine, CMI; imipramine, IMI;
and desipramine, DSI) have been solved by two groups.2,3

The TCAs bind in an extracellular-facing vestibule about
11 Å above the bound leucine substrate and the two sodium
ions, as shown in the crystal structures.2 It was demonstrated
that they uncompetitively inhibit the transport of the leucine
substrate, probably through the stabilization of the extracel-
lular gate in a closed conformation.2,3 With this in mind,
the half-maximal inhibitory concentration (IC50) of these
TCAs should strongly correlate to their binding affinities.
In dose-response experiments reported by Singh et al.,2 CMI
has an IC50 of inhibition of leucine transport of about eight-
fold lower than IMI. Thermodynamically, this roughly
corresponds to a free energy decrease of ∼2 kT (about 1.5
kcal/mol at a temperature of 315 K). It was also shown that
DSI is a less potent inhibitor compared to IMI (personal
communication from S. Singh). Thus, Singh et al.’s data
suggested the following affinity sequence: CMI > IMI > DSI.
While ranking of the ligands for their binding affinity is
available, it is difficult to measure absolute binding free
energies for TCAs for their high nonspecific binding to
chromatographic filters during separation, making evaluation
of ratios between bound/unbound forms ambiguous. The
closest measure to a Kd for TCA binding is the substrate
uptake inhibition constant (Ki) measured by radiolabeled
uptake experiments, which depends on drug binding efficacy.
These values alone do not represent an absolute Kd but will
provide an accurate measure for relative potency of these
drugs known for their ability to inhibit substrate transport
and may be used to rank them accordingly. A recent
development from the Javitch group on the use of a
scintillation proximity assay (SPA) for measuring the Kd of
radiolabeled compounds to detergent-solubilized material
may lead to experimental Kd values in the future.7-9 This
technique was recently used to measure [3H]-citalopram
binding to the presynaptic neuronal membrane serotonin
transporter (SERT, homologous to LeuT), suggesting low
µM to nM range of affinities.3,4 The availability of experi-
mental binding affinities,2 together with the high-resolution
crystal structures, make the TCA/LeuT system a rich platform
for the testing and validation of various computational
strategies for calculating binding free energies of drug
binding.

The equilibrium thermodynamics of protein-ligand as-
sociation is commonly described by binding affinity or Gibbs
free energy (∆G) and can be measured by a variety of
standard biophysical or biochemical techniques, such as
biospectroscopy, isothermal titration and differential scanning
calorimetric techniques, electrophysiology, etc. However, to
further our understanding of the process and its molecular
determinants, it is important to obtain the quantitative
contribution of different forces governing high affinity and
specificity. Accurate prediction of binding affinity may,
therefore, facilitate drug and protein design and optimization
practices to attain better drugs with well-controlled binding

specificity and/or affinity. Therefore, the calculations of
binding free energy by means of molecular simulations has
been a major area of research in theoretical and computa-
tional chemistry/biochemistry10-20 over the past 40 years.
Many different approaches to evaluations of ligand affinities
have been developed and can loosely be categorized into
three major classes.21-24 The first class of methods encom-
passes empirically driven schemes based on training sets
derived from complexes with known structures.25,26 The
features of the known protein binding pocket can be
translated into set of potential parameters used for virtual
computer screening of large compound libraries or for
designing novel ligands de novo.27,28 Although it is a very
powerful approach, its usability is limited if the system under
study is lacking an extensive training set data.24

The second class of methods includes different extensions
of popular molecular mechanics/Poisson-Boltzmann (gen-
eralized Born) surface area [MM/PB(GB)SA] algorithms,29,30

where sampling of ligand/receptor coordinates achieved by
molecular dynamics (MD) simulations and binding affinity
is computed from collected trajectories.16,31-34 The interac-
tion energies (MM) are represented by respective force-field
components for electrostatic and Lennard-Jones intermo-
lecular terms, the nonelectrostatic component of the desol-
vation free energy is introduced via an empirical term
(proportional to buried solvent accessible area), and the term
accounting for the electrostatic penalty of water removal from
the protein-ligand interface (desolvation penalty) is com-
puted by means of continuum electrostatic models (such as
Poisson-Boltzmann or generalized Born model). The col-
lection of frames containing a protein-ligand complex can
be extracted from MD/MC simulations, and each contribution
can be averaged to obtain the binding free energies. This
very popular and attractive method provides a straightforward
and robust way for the computation of enthalphic contribu-
tions for a collection of frames extracted from MD but meets
increasing difficulties when providing an accurate estimate
for the loss in degrees of freedom incurred upon moving
from bulk solution to the receptor-bound state and when
accounting for dynamics/contribution due to explicit water
present at the binding site.35,36

The third class includes approaches based on all-atom
atomistic simulations.15 The approaches vary from the
application of thermodynamic integration37 and free energy
perturbation techniques to the computations of the potential
of mean forces38 with umbrella sampling methods,39 adaptive
biasing force MD,40 or steered MD methods.41 The difficul-
ties associated with the requirement of sampling vast
conformational space often lead to use of nonequilibrium
simulations Jarzynski’s equation,42 modifications of Hamil-
tonian, such as metadynamics,43 and a variety of enhanced
sampling techniques.44 Many of theses methods require
certain knowledge of the pathway of the drug binding/
releasing. A very promising theoretical approach to the
problem is to compute absolute binding free energies using
a molecular dynamics/free energy perturbation (MD/FEP)
method with constraining forces.35,45 In this method, the free
energies are calculated from the thermodynamic reversible
work along an unphysical transformation path with MD/FEP
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using a potential function that depends on one or several
coupling parameters, such that the appropriate potential
energy is recovered at the end-points.15,19,45-47 Arguably,
this approach provides the best way to describe the thermo-
dynamics of protein-ligand recognition providing achieve-
ment of an adequate conformational sampling. The most
common use of the FEP techniques is for the evaluation of
the relative binding free energies between two different
ligands through the perturbation of one ligand into another
with a dual-topology scheme.17,48 However, calculation of
the absolute (standard) free energy arguably provides more
detailed information about the mechanisms of ligand binding.
It can also lead to the direct connection between macroscopic
experimental measurements of binding affinities and the
microscopic structural data extracted from FEP simulations.

To overcome expensive conformational sampling in
computations of the absolute binding free energies with FEP/
MD, one can use restraining potentials.18,35,45 Recent ap-
plications of this technique have consisted of FEP/MD
simulations with a reduced generalized solvent boundary
condition (GSBP)49 model with enhanced sampling by using
conformational, translational, and orientational restraining
potentials.35 The method was developed and tested on a
simple system of FKBP12/ligand35 as well as a model system
of T4 lysozyme/ligand45 with considerable success. It has
also been successfully applied to explain the substrate
specificity of the LeuT neurotransmitter transporter,50 em-
phasizing its applicability to membrane proteins as well.
Despite rigorous theoretical foundation for FEP/MD methods
and apparent success in applications studying highly specific
binding to proteins,35 the evaluation of many methodological
aspects of these computations and its applicability to studies
of ligand binding to membrane proteins is still a future goal.

In this report, we extend FEP/MD simulations to studies
of an antidepressant binding to the membrane transporter
LeuT. We are exploring the dependence of computed
absolute free energies on the choice of atomic models, the
strength of restraining potentials, and the reference structure
for conformational constraints. We also report on the role
of ligand reorganization free energy in high-affinity binding
to the protein. It was recently suggested that contribution
due to ligand reorganization upon transfer from bulk solution
to a protein binding pocket could be as high as 7-8 kcal/
mol and could potentially be the major determinant of high-
vs low-affinity binding.28 To test the validity of different
approximations (PBC vs reduced GSBP approximation), we
compare the free energy results from absolute free energy
calculations to those from more common relative free energy
calculations.17,48 This report is organized as follows: Theo-
retical formulation of the FEP/MD absolute free energy
calculation method is briefly reviewed in Section II. Com-
putational details and results are presented in Sections III
and IV, respectively. The conclusion of this report is
summarized in Section V.

II. Theoretical Formulation

A. Restraint Forces. To focus on relevant degrees of
freedom, translational and orientational restraint potentials

were implemented in all simulations, as described previ-
ously.18,35,45,51-53 These two restraints are defined by three
positions in the protein (Figure 1, center of mass Pc, and
two randomly picked positions P1 and P2) and three positions
in the ligand (center of mass Lc, and two randomly picked
positions L1 and L2). The translational restraint is imple-
mented to constrain the position of the center of mass of the
ligand (Lc) relative to the protein. Its form is

where r is the distance between Lc and Pc, θ is the angle
P1-Pc-Lc, and � is the dihedral angle P2-P1-Pc-
Lc. The corresponding reference values derived from an
average of the equilibration trajectory are r0, θ0, and �0. The
force constants for restraints on distance and angles (includ-
ing dihedral angles) are kdist and kang. Similarly, the rotational
restraint on the ligand has the form of

where R is the angle Lc-L1-L2, � is the dihedral angle
P1-Pc-Lc-L1, and γ is the dihedral angle Pc-Lc-L1-L2.
The corresponding reference values derived from an average
of the equilibration trajectory are R0, �0, and γ0. The
translational and rotational restraints ensure that the ligand
is around its bound state. A configurational restraint (uc), in
the form of a harmonic potential with respect to the root-
mean-square deviation (RMSD) of the ligand, relative to a
reference configuration, is also applied to constrain the ligand
configuration.

Figure 1. Translational and rotational restraints on the ligand.
Three positions in the protein (center of mass Pc, and
randomly picked P1 and P2) and three positions in the ligand
(center of mass Lc, and randomly picked L1 and L2) were
used to set up the translational and rotational restraints. The
translational restraints, shown in red, are defined by distance
r (Pc and Lc), angle θ (P1, Pc, and Lc), and dihedral � (P2,
P1, Pc, and Lc). The rotational restraints, shown in magenta,
are defined by angle R (L1, Lc, and Pc) and dihedrals � (P1,
Pc, Lc, and L1) and γ (Pc, Lc, L1, and L2).
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B. Standard Free Energy. The free energy (∆Gb) of a
ligand (L) binding to a receptor protein (R) correlates to the
equilibrium constant Kb of the binding reaction L + RSL ·
R by

where � ≡ 1/(kBT), with kB being the Boltzmann constant
and T being the absolute temperature. Assuming the binding
of a ligand is defined as moving one ligand molecule from
the bulk solution to the binding site, Kb can be expressed as
the following equation at low ligand concentration:

where L and X are the coordinates of the ligand molecule
and the remaining atoms (including solvent, receptor protein,
counterions, and others), respectively. U is the total potential
energy of the system, rL is the position of the center of mass
of ligand L, and r* is some arbitrary position in the bulk.
The δ function is a result of the translational invariance of
the ligand in the bulk. To evaluate the binding free energy
with molecular simulations, Deng et al.53 wrote eq 4 in the
form of the multiple of a series of intermediate states
connecting the initial (the ligand in the binding site) and final
(the ligand in the bulk) states:

where the subscript 1 and 0 of U indicate fully interacting
and fully decoupled ligand.

In terms of free energy contributions, the binding constant
can be written as

where the terms sequentially correspond to the terms in eq
5. All the terms involving ∆G can be calculated by the
standard free energy perturbation method,15,54,55 while the
free energy components associated with the configurational
constraint (∆Gc

site and ∆Gc
bulk) can be better obtained by an

umbrella sampling scheme and the translational (Ft), and
rotational (Fr) factors can be evaluated directly with numer-
ical integration schemes, since the interaction between the
ligand molecule and the environment is turned off.

The standard binding free energy, defined relative to the
standard concentration of 1 mol/L, is

where C0 ) 1 mol/L and KbC0 gives the standard binding
constant. The free energy contributions are grouped as:
∆∆Gint ) ∆Gint

site - ∆Gint
bulk, ∆∆Gc ) ∆Gc

bulk - ∆Gc
site, ∆∆Gt

0

) -∆Gt
site - kBT ln (FtC0), and ∆∆Gr ) -∆Gr

site - kBT ln
(Fr), where ∆∆Gintcorresponds to the free energy difference
associated with removing the ligand, restrained by the
potential uc from the bulk and inserting it to the binding site,
restrained by uc, ut, and ur; ∆∆Gt

0and ∆∆Gr correspond to
the free energy changes associated with turning on and off
the translational and rotational restraints on the ligand; ∆∆Gc

corresponds to free energy associated with the application
of RMSD restraints. Recently, Deng and Roux further
incorporated a grand canonical Monte Carlo step into the
absolute binding free energy calculation to account for the
fluctuation of the number of water molecules in highly
occluded binding sites during alchemical perturbation.19,56

For the TCA/LeuT systems, however, the TCA binding sites
are open to access by water molecules from the extracellular
side of the membrane. Thus, standard molecular dynamics
trajectories offer adequate sampling for fluctuations in the
number of water molecules around the binding site (Figure
S2 in the Supporting Information).

C. Decomposition of the Interaction Free Energy. The
interaction free energy, ∆Gint

site and ∆Gint
bulk, are decomposed

into the contributions from electrostatic and Lennard-Jones
(LJ) components. Further more, with the application of the
Weeks-Chandler-Andersen (WCA) scheme,57 the LJ po-
tential, written as eq 8 in the CHARMM 27 all-atom force
field, is uniquely separated into the repulsive (eq 9) and the
dispersive (eq 10) potentials.

Kb ) [L · R]
[L][R]

) exp[-�∆Gb] (3)

Kb )
∫site

dL∫ dXe-�U

∫bulk
dLδ(rL - r*)∫ dXe-�U

(4)

Kb )
∫site

dL∫ dXe-�U1

∫site
dL∫ dXe-�(U1+uc)

×

∫site
dL∫ dXe-�(U1+uc)

∫site
dL∫ dXe-�(U1+uc+ut)

×

∫site
dL∫ dXe-�(U1+uc+ut)

∫site
dL∫ dXe-�(U1+uc+ut+ur)

×

∫site
dL∫ dXe-�(U1+uc+ut+ur)

∫site
dL∫ dXe-�(U0+uc+ut+ur)

×

∫site
dL∫ dXe-�(U0+uc+ut+ur)

∫bulk
dL∫ dXe-�(U0+uc+ut)

×

∫bulk
dL∫ dXe-�(U0+uc+ut)

∫bulk
dLδ(rL - r*)∫ dXe-�(U0+uc)

×

∫bulk
dLδ(rL - r*)∫ dXe-�(U0+uc)

∫bulk
dLδ(rL - r*)∫ dXe-�(U1+uc)

×

∫bulk
dLδ(rL - r*)∫ dXe-�(U1+uc)

∫bulk
dLδ(rL - r*)∫ dXe-�(U1)

(5)

Kb ) exp(+�∆Gc
site) × exp(+�∆Gt

site) × exp(+�∆Gr
site) ×

exp(-�∆Gint
site) × Fr × Ft × exp(+�∆Gint

bulk) ×

exp(-�∆Gc
bulk) (6)

∆Gb
0 ≡ -kBTln[KbC

0] ) ∆∆Gint + ∆∆Gc +

∆∆Gt
0 + ∆∆Gr (7)

ULJ(r) ) ε[(Rmin

r )12

- 2(Rmin

r )6] (8)

Absolute and Relative Binding Affinity J. Chem. Theory Comput., Vol. 6, No. 6, 2010 1903



where ε has the dimension of energy, and Rmin has the
dimension of length. When the separation r of two atoms is
at Rmin, the LJ potential reachs its well depth -ε.

The interaction free energies (∆Gint
a where a represents site

or bulk) are thus further separated into three components due
to the contributions from electrostatic (∆Gelec

a ), dispersive
LJ (∆Gdisp

a ), and repulsive LJ (∆Grepu
a ) potentials.53 This

decomposition has shown to increase the statistical accuracy
of the calculation of hydration free energies of molecules.53

More importantly, while the decomposition of the interaction
free energies is arbitrary to some degree, the values of these
contributions helps to understand the nature of ligand
binding.35,45,53,56

D. Free Energy Perturbation. The interaction free ener-
gies are evaluated by alchemical transformations using the
standard free energy perturbation approach.15,54,55 Briefly,
the free energy contribution is calculated by gradually turning
the potential on or off using a coupling parameter λ valued
from 0 to 1. For example, to calculate the dispersive free
energy for the ligand binding to the receptor binding site
(∆Gdisp

site), a coupling parameter λdisp is introduced. When λdisp

) 0, the dispersive interaction between the ligand and the
environment is completely turned off, and when λdisp ) 1,
the dispersive interaction between the ligand and the
environment is completely turned on. The resulting auxiliary
potential energy with the coupling constant is as follows

where U0 is the total potential when the dispersive interactions
between the ligand and the environment are completely turned
off, and Udisp(λdisp) is the total dispersive potential between the
ligand and the environment scaled by the coupling constant.
Several windows are applied to gradually increase the coupling
constant from 0 to 1. For each window (from λdisp,i to λdisp,j),
the ensemble average 〈exp {-�[U(λdisp,j) - U(λdisp,i)]}〉U(λdisp,i)

is obtained, and the sum of these windows corresponds to exp
(-�∆Gdisp

site). Similar FEP/MD methods can be applied to
calculate the other ∆G components. For a detailed description
of these FEP/MD procedures, readers are referred to the work
by Deng et al.45

E. Calculation of the Different Free Energy Compo-
nents. Combining the sequential process in eq 5 and the
decomposition of the interaction energy described in section
C, the steps corresponding to the dissociation of the fully
interacting ligand in the protein binding site [system U1(site)]
as the initial state are listed in Table S1 in the Supporting
Information. For each step, the second column gives the
initial system, and the third column gives the system change.
The corresponding free energy component and the method
used to compute it are listed in the third and fourth columns,
respectively. The free energies associated with the configu-
rational constraints of the ligand to the reference configu-

ration, ∆Gc
site and∆Gc

bulk, are calculated by integrating the
Boltzmann factor of the RMSD potential of mean force
(PMF) obtained from umbrella sampling simulations. The
translational factor (Ft) and the rotational factor (Fr) are
numerically integrated from the expressions of

where r, θ, �, R, �, γ are the constrained internal coordinates
illustrated in Figure 1, and ut and ur are the translational
and rotational restraining potentials applied to the bound
ligand presented in eqs 1 and 2. FEP/MD simulations are
applied to get all of the other components of the absolute
binding free energy.45

From Table S1 in the Supporting Information, it should
be noted that when ∆Gelec

site, ∆Gdisp
site, and ∆Grepu

site are calculated,
restraints are applied during the alchemical transformations,
thus making the values conditional on the restraining forces.
Nonetheless, a comparison to their corresponding values in
the bulk is informative about the binding.

III. Methods

A. Molecular Models of TCAs. The chemical structures
of the TCAs are shown in Figure 2. A neutral model for
clomipramine (CMI) was originally developed in ref 58. New
models with a positive charge for CMI, imipramine (IMI),
and desipramine (DSI) were developed with the same
procedure as described for CMI. Briefly, the geometric
parameters (bond lengths, angles) were extracted from the
crystallographic data. The positions of hydrogen atoms were
unavailable from the crystal structures and were obtained
by the HBUILD utility implemented with the CHARMM
program.59 The CHARMM27 force field60 was used for the
intramolecular potentials, and the nonbonded Lennard-Jones
potential was used for the three drugs. Some of the torsional
potentials are not available in the CHARMM27 force field
and were obtained by fitting the B3LYP/6-31G* torsion
profiles.

Electrostatic potentials are crucial for reproducing the
binding affinities of drugs to protein receptors. We assigned
specific partial charges to each atom of the drugs using the

Urepu(r) ) ULJ(r) + ε when r < Rmin;

Urepu(r) ) 0 when r g Rmin (9)

Udisp(r) ) -ε when r < Rmin; Udisp(r) ) ULJ(r)

when r g Rmin (10)

U(λdisp) ) U0 + Udisp(λdisp) (11)

Figure 2. Structural formulas of the three tricyclic antidepres-
sants (TCAs) used for studies. The side-chain nitrogens are
set in protonated form in accordance to the experimental
conditions.

Ft ) ∫0

∞
drr2 ∫0

π
dθsin(θ)∫-π

π
dφexp[-�ut(r, θ, φ)]

(12)

Fr )
1

8π2 ∫0

π
dRsin(R)∫0

π
d�∫-π

π
dγexp[-�ur(R, �, γ)]

(13)
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RESP fitting approach described by Anisimov et al.61 Briefly,
for each drug, an electrostatic potential (ESP) grid was
created on several Connolly surfaces62 of the molecule by
the CGRID program. ESP calculation at the B3LYP/6-31G*
level was applied to obtain the electrostatic map at the grid
points, which was then used for partial charge fitting with
the FITCHARGE module of the CHARMM program. The
initial charge set (CSinitial) was obtained for each atom type
from the CHARMM nonpolarizable force field. A parabolic
penalty function was used to restrain the values of the fitted
charge set (CSfitted) with restraining forces of 10-4 Å2 to the
initial charge set (CSinitial). Thus, the partial charges of CSfitted

have a better match to the electrostatic map. The initial
(CSinitial) and fitted (CSfitted) charges are presented in the
Supporting Information. The total charge of each TCA
molecule is +1 with the side-chain nitrogen protonated based
on the reported pKa values of the TCAs.63,64

B. Equilibrium MD Simulation. The starting configu-
ration of drug and substrate-bound LeuT were taken from
the X-ray coordinates revealed by Singh et al.2 (Protein Data
Bank entries 2Q6H, 2Q72, and 2QB4). The complexes were
embedded in a lipid membrane using a multistep membrane-
building procedure used in previous studies.50 The simulation
box contains the LeuT transporter, bound sodium and/or
chloride ions, one leucine substrate, one antidepressant
(clomipramine, imipramine, or desipramine) bound at the
extracellular gate, and 148 dipalmitoylphosphatidylcholine
(DPPC) lipid molecules solvated in an explicit 100 mM NaCl
aqueous solution. A snapshot of the full simulation box is
shown in Figure 3a. All computations were carried out by
CHARMM, version c34b2, with the CHARMM27 force
fields for proteins and lipids. MD simulation methods used
here are similar to those used in previous studies of
membrane systems.50 Briefly, constant temperature/pressure

algorithms were applied (with pressure at 1 atm and
temperature at 315 K). Periodic boundary conditions were
used for the hexagonal system. Electrostatic interactions were
treated with the particle mesh Ewald (PME) algorithm with
a 96 × 96 × 96 Å grid for fast Fourier transform, κ ) 0.34
Å-1, and a sixth-order spline interpolation. The nonbonded
interactions were smoothly switched off at 12-14 Å. All
simulation systems were equilibrated for 5 ns each without
any configurational constraints.

C. Absolute Binding Free Energy Calculation. Follow-
ing the equilibrium MD simulation, drug binding free
energies were calculated using the protocol described in
section II. To decrease computational cost, only the atoms
in and surrounding the binding site (within 20 Å of the bound
drug) were treated explicitly. All other atoms in the system
were considered implicit, using a GSBP49 generated for each
system. It has been shown that the use of GSBP significantly
decreases the size of the system (in our case from ∼60 000
to ∼7000 atoms, Figure 3b) while keeping the statistical error
relatively low (∼1-2 kcal/mol).35,45 After the GSBP maps
were generated, the reduced systems were minimized and
equilibrated for 0.5 ns. Using the free energy decomposition
protocol, the free energy components resulting from elec-
trostatic, dispersive, repulsive, and constraining forces were
measured independently. The CHARMM PERT function
with the additional CHEMPERT option59 was used for the
FEP/MD simulations. All FEP/MD runs were equilibrated
for 0.1 ns before collecting data during a 0.4 ns run. For the
electrostatic component, both forward and reverse windows
were calculated with the values for the coupling parameter
λ set to [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].
The dispersive component was measured through four
forward windows with λ set to [0.0, 0.25, 0.75, 1.0]. The
repulsive component was calculated by annihilating the

Figure 3. Simulation system for the TCA and substrate-bound leucine transporter LeuT. (a) The full simulation system for the
MD equilibration. The protein is shown in cartoon mode (gray). A leucine substrate (blue) and a clomipramine drug (red) bound
to the protein are shown in space-fill mode. The DPPC membrane (cyan) and water (red) molecules are shown in line mode,
while the bound sodium ions and counterions (100 mM NaCl) are not shown. The whole system contains about 60 000 atoms.
(b) A sphere containing LeuT (gray cartoon) and substrate (blue space-fill), the bound TCA (red space-fill), and water molecules
(red lines) in the GSBP simulation system used for FEP/MD. Only atoms in a sphere (20 Å radius) centered on the ligand are
represented explicitly. All atoms outside the sphere are represented implicitly using a continuum electrostatic approach.
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molecule from binding site or bulk solvent with the applica-
tion of a soft-core potential.53 The annihilation is done from
both forward and reverse windows with λ set to [0.0, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. The translational and
rotational constraint components were measured through
forward windows with λ set to [0.0, 0.0025, 0.0050, 0.0075,
0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0].
Similar coupling constants were applied in the work of Deng
et al.45 and Wang et al.35 The results were processed with
the weighted histogram analysis method65 (the WHAM
module of CHARMM) to remove any bias due to the
restraining forces. Hydration free energies of the TCAs were
calculated by FEP/MD, using a model system of TCA
solvated by 400 water molecules. The spherical solvent
boundary potential (SSBP)53,66 was applied to account for
the influence outside of the solvation sphere. The FEP
protocol used to determine hydration free energy is the same
as that described above for the computation of absolute
binding free energy. Equilibration without constraints was
performed for 100 ps, and window lengths for evaluation of
free energy were 200 ps. Statistical uncertainty is reported
with the standard deviations of each free energy component
and the total solvation, site, and binding free energies
obtained through separating the FEP/MD simulations to three
blocks and obtaining the free energies for each block using
WHAM analysis.65

D. Relative Binding Free Energy Calculation. The
binding free energy difference between CMI and IMI as well
as IMI and DSI were calculated with the CHARMM PERT
function. For example, in the case of CMI/IMI, the equili-
brated membrane system of LeuT/CMI (equilibrated from
PDB entry 2Q6H) is used as the starting configuration (λ )
0), and in the final configuration, CMI is perturbed to IMI
(λ ) 1). For the perturbation, 11 windows were used varying
between 0.0 and 1.0 by increments of 0.1. For each
perturbation window, a 10 ps equilibration run and a 190 ps
production run were applied. We also use the equilibrated
membrane system of LeuT/IMI (equilibrated from PDB entry
2Q72), as the λ ) 0 state and similar procedures were carried
out to calculate the relative binding free energy by perturbing
IMI to CMI. The relative binding free energies from the
forward and backward simulations are within 1 kcal/mol of
difference, and the average relative free energy is reported.

IV. Results and Discussion

A. Hydration Free Energy of TCAs. The hydration free
energies of the three TCAs are listed in Table 1. Gtot, the
sum of the free energy components of repulsive (Grep),

dispersive (Gdisp), electrostatic (Gelec) and conformational
(Gconf), will be subtracted from Gtot(site) (Table 2) to obtain
the absolute binding free energy. To obtain the hydration
free energy, the component caused by RMSD constraining
force for the solute in vacuum (Gconf_vac) needs to be
subtracted from Gtot. The resulting hydration free energies
for all the three TCAs from the calculations with SSBP
potential are in the order of -50 kcal/mol. The calculations
indicate that the electrostatic component (Gelec), compared
to the LJ component (Grepu + Gdisp) of the free energy, mostly
accounts for the favorable hydration free energies for the
three TCAs.

The influence of applied partial charge sets on the solvation
free energy is apparent. While there are only slight differ-
ences (within 1 kcal/mol) on solvation free energies for the
two charge sets (CSfitted and CSinitial) of CMI and IMI, there
is a decrease of about 3 kcal/mol in hydration free energy
of DSI from CSfitted to CSinitial. The most significant change
is the electrostatic free energy component which has been
decreased from -56.2 for CSfitted to -62.3 kcal/mol for
CSinitial. This indicates that, given relatively small changes
in the partial charges (Table S2, columns 7 to 6 in the
Supporting Information), the electrostatic contribution of
hydration free energy could be dramatic. It should be noted,
however, that the hydration free energies obtained here are
for drug transfer from vacuum to bulk solution. The solubility
data reported for many pharmaceutical agents is not readily
comparable to theoretical results, as one has to first correct
for the drug sublimation free energy.

B. Absolute Binding Free Energies of TCAs Binding
to LeuT. The computed absolute binding free energies of
TCAs to LeuT are listed in Table 2. The absolute free energy
of binding is the difference between the free energies of site
binding and hydration (Gtot in Table 1). As described, the
absolute energy is decomposed into the contributions from
electrostatic, dispersive, and repulsive parts as well as from
constraint potentials on RMSD, orientation, and translation.
The final absolute binding free energies are -13.6, -13.4,
and -12.0 kcal/mol for CMI, IMI, and DSI, respectively.
All of them are negative, indicating favorable binding. As
discussed in Section II, while the decomposition of the free
energies is path dependent, the comparison between the same
contributions for different ligands can still provide valuable
information about the nature of binding (Figure 4). CMI has
a lower binding free energy than IMI mainly due to its gain
in the dispersive free energy (-4.1 kcal/mol), which may
be due to favorable interactions achieved by its additional
chlorine with the LeuT side chain.2 Despite the overall

Table 1. Absolute Free Energy of Hydration for Clomipramine (C), Imipramine (I), and Desipramine (D)a

Grep Gdisp Gelec Gconf Gtot Gconf_vac Gsolv

CSfitted C 39.4 ( 0.5 -35.3 ( 0.2 -50.7 ( 0.1 -4.9 ( 0.6 -51.4 ( 0.4 -3.1 -48.3
I 38.3 ( 0.5 -33.6 ( 0.2 -51.4 ( 0.2 -5.5 ( 0.8 -52.2 ( 0.8 -7.2 -45.1
D 37.3 ( 0.9 -32.4 ( 0.2 -56.2 ( 0.1 -3.6 ( 1.2 -54.9 ( 1.9 -5.0 -49.9

CSinitial C 39.9 ( 0.8 -35.0 ( 0.2 -54.9 ( 0.1 -7.2 ( 1.4 -57.2 ( 2.4 -10.0 -47.1
I 38.5 ( 0.7 -33.6 ( 0.2 -55.5 ( 0.3 -4.6 ( 0.8 -55.2 ( 0.6 -9.3 -45.8
D 37.3 ( 0.8 -32.2 ( 0.1 -62.3 ( 0.1 -3.9 ( 0.1 -61.1 ( 0.8 -8.5 -52.6

a The data are obtained with the application of SSBP. The first group (rows 2-4) of results is obtained from simulations with the fitted
charge set (CSfitted), and the second group (rows 5-7) of results is obtained with the initially guessed charge set (CSinitial). Gtot is the sum of
the free energy components of repulsive (Grep), dispersive (Gdisp), electrostatic (Gelec), and conformational (Gconf).
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unfavorable binding free energy for DSI compared to IMI,
the DSI binding free energy exhibits a more favorable
repulsive component. This is explained by the fact that DSI
has one less methyl group on its “tail” and is accommodated
better by the binding pocket.

The complete expression for the binding constants (eq
4-5) contains a term that describes conformational dynamics
of the receptor. To perform their function, membrane
transporters may undergo large conformational changes,
binding and unbinding ions, and opening and closing
extracellular and intracellular gates. Such events take place
over large time intervals in the µs to s range. These changes
in the protein’s structure are not present in the ns MD/free
energy simulations. Only one state of the transporter (the
“occluded” state) is considered, leading, therefore, to a large
overestimation of the absolute drug binding affinities. The
contribution of the binding site’s conformational changes to
the complete partition function is expected to be unfavorable.
This problem is well-known, and the interested reader may
refer to an excellent review by Mobley and Dill.67 Clearly,

this component plays a dominant role in differences between
computed and experimental binding affinities. However,
assuming that these large conformational changes are ion
induced and independent of the particular drug, one may
conclude that relative free energies or drug ranking based
on the absolute free energy computations will be robust, since
the term describing receptor dynamics will cancel out.
Regardless, the absolute binding free energies, though lacking
in contribution from receptor allosteric changes, provide
molecular insights on key factors governing formation of
the high-affinity/-specificity complex between the protein and
the drug. Below we will provide detailed discussion on the
importance of different factors in computations of absolute
binding affinities with FEP/MD Simulations.

C. Restraints of Different Strengths. The application of
biasing restraints on configuration, translation, and orientation
of the ligand greatly reduces the configuration space and
enhances the sampling efficiency. However, the choice of
the restraining force constants has been shown to affect the
outcome of individual free energy contributions (i.e., dis-
persive, repulsive, electrostatic, etc.), despite the resulting
binding free energy being largely unaffected.35 In this section,
several sets of different force constants are used in calculating
the absolute free energy of CMI binding to LeuT. The effect
of these contributions on the total absolute free energy is
evaluated. From Table 3, the distance constant (kt, in kcal/
mol/Å2) has little effect on the value of Gint(site), the sum
of electrostatic, dispersive, and repulsive free energies as well
as the total absolute binding free energy, which is evident
from the comparison of the results from (kc ) 10, kt ) 10,
and ka ) 200) to (kc ) 10, kt ) 1, and ka ) 200). Reducing
the strength of the angular and dihedral force constant (ka,
in kcal/mol/rad2) makes Gint(site) more unfavorable but only
slightly affects the final binding free energy. Lowering the
RMSD force constant (kc, in kcal/mol/Å2) to 1 kcal/mol/Å2

only slightly changes both Gint and the final binding free
energy, as evident in the set (kc ) 1, kt ) 10, and ka ) 200).
Thus, the choice of the constraining forces is robust to some

Table 2. Absolute Free Energy of Binding for Clomipramine (C), Imipramine (I), and Desipramine (D) to LeuT in Reduced
GSBP Systema

Gpos

Grep Gdisp Gelec Gconst -kBT ln(FtC0) -kBT ln(Fr) Gconf Gtot

CSfitted site C 30.0 ( 0.7 -54.6 ( 0.3 -48.7 ( 0.6 -3.0 ( 0.1 5.4 6.5 -0.5 ( 0.1 -64.9 ( 1.2
I 30.5 ( 1.1 -48.8 ( 0.4 -55.3 ( 0.8 -2.6 ( 0.1 5.4 6.4 -1.2 ( 0.1 -65.6 ( 0.4
D 28.0 ( 0.4 -50.8 ( 0.1 -53.6 ( 0.1 -2.1 ( 0.1 5.6 6.4 -0.5 ( 0.1 -67.0 ( 0.6

binding C -9.4 ( 0.9 -19.4 ( 0.6 2.0 ( 0.6 8.8 ( 0.1 4.4 ( 0.5 -13.6 ( 1.4
I -7.8 ( 1.4 -15.3 ( 0.6 -3.9 ( 0.9 9.3 ( 0.1 4.3 ( 0.8 -13.4 ( 1.0
D -9.3 ( 0.4 -18.3 ( 0.1 2.6 ( 0.1 9.9 ( 0.1 3.0 ( 1.2 -12.1 ( 1.4

CSinitial site C 30.6 ( 0.9 -54.4 ( 0.3 -54.3 ( 0.4 -1.5 ( 0.1 5.4 6.5 -0.5 ( 0.1 -68.2 ( 0.6
I 33.1 ( 0.2 -48.3 ( 0.1 -58.3 ( 0.4 -1.9 ( 0.1 5.4 6.4 -1.6 ( 0.1 -65.2 ( 0.4
D 26.4 ( 1.1 -49.0 ( 0.5 -60.2 ( 0.6 -2.6 ( 0.1 5.4 6.4 -1.3 ( 0.1 -74.9 ( 1.7

binding C -9.3 ( 1.5 -19.4 ( 0.2 0.6 ( 0.3 10.3 ( 0.1 6.7 ( 1.3 -11.1 ( 2.5
I -5.5 ( 0.7 -14.7 ( 0.3 -2.7 ( 0.3 9.9 ( 0.1 3.0 ( 0.7 -10.0 ( 0.7
D -10.9 ( 1.6 -16.8 ( 0.4 2.1 ( 0.6 9.2 ( 0.2 2.6 ( 0.2 -13.8 ( 2.1

a The first group (rows 2-7) of results is obtained from simulations with the fitted charge set (CSfitted), and the second group (rows 8-13)
of results is obtained with the initially guessed charge set (CSinitial)*. For the site free energy, Gtot is the sum of the free energy components
of repulsive (Grep), dispersive (Gdisp), electrostatic (Gelec), positional (Gpos, including translational and rotational constraints), and
conformational (Gconf). For the binding free energy, the values are obtained by subtracting the corresponding components of solvation free
energy (Table 1) from the site free energy. Note that CSinitial is the initial charge set based on CHARMM force field, and the atomic charges
were derived from similar atom types in the CHARMM27 force field and were not parametrized. CSfitted is the RESP charge fitted for the
electrostatic density map from QM calculation, and it reflects the chemical environment of the atoms of the drugs better.

Figure 4. Column illustration of the binding free energy
components of three TCA’s (CMI in blue, IMI in green, and
DSI in magenta) binding to LeuT. From left to right: repulsive,
dispersive, electrostatic, positional (including translational and
rotational constraints), configurational, and total binding free
energy.
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degree, as the calculations with several sets of constraining
constants produce similar binding free energies around -13.6
kcal/mol. Nevertheless, we picked kc ) 10 kcal/mol/Å2, kt

) 10 kcal/mol/Å2, and ka ) 200 kcal/mol/rad2 as the set of
constraining constants, as it generates relatively low statistical
errors for each contribution of the free energies. This set of
force constants is consistent with the one applied by Deng
et al.45 The combination of kc ) 10 kcal/mol/Å2, kt ) 1 kcal/
mol/Å2, and ka ) 200 kcal/mol/rad2 provides lower binding
free energy error, but the free energy component for repulsive
interaction is increased which indicates that the low error in
binding free energy might not be sustainable. Interestingly,
the hardest (kc ) 100, kt ) 100, and ka ) 2000) and softest
(kc ) 0, kt ) 0, and ka ) 0) constraints applied lead to the
largest statistical deviations in binding free energy (-18.3
and -15.4 kcal/mol, respectively), reflecting two major
problems one may face with constrained FEP simulations:
under-sampled conformational space for substrate dynamics
and over-restricted decreased conformational space that
prohibits substrate dynamics in the site.

D. Effect of the Reference Structure Choice and
RMSD Constraint Scheme. Up to this point we have used
the average bound structure as the reference structure for
the configurational constraint. The free energy component
due to this constraint has a positive sign which indicates that
there is a free energy loss upon binding due to the fact that
the configurational freedom is restricted when one drug is
bound to the receptor (moving from solvent to the protein
binding pocket). A less natural, but still reasonable, reference
structure is the lowest-energy structure for the hydrated drug.
To find out the preferred conformation in the bulk solution
for three drugs, we have performed an extensive replica
exchange MD simulation.68,69 Briefly, the trajectories of the

replica exchange MD simulation of solvated drugs were used
to obtain a probability distribution of conformations accord-
ing to RMSD. The solvated structures of drugs with the most
probable RMSDs were averaged to give the referenced
average-solvated structure. The free energies calculated using
these reference structures are listed in Table 4. The binding
free energy changes from -13.6 to -17.9 for CMI, from
-13.4 to -13.2 for IMI, and from -12.0 to -14.5 kcal/
mol for DSI. CMI is still stands out as the most potent
inhibitor for LeuT. DSI becomes more favorable than IMI,
but the difference is within the statistical uncertainty (2.6
kcal/mol), considering that IMI and DSI have very similar
binding affinity. However, the free energy differences
between CMI and IMI are more pronounced and are
significantly higher than that of estimated IC50 values
reported from the experiment.2

It is interesting to examine the variation of the free energy
components due to the choice of reference structures for the
drugs (Figure 5). The sum of nonbonding components of
the relative free energy (Grep + Gdisp + Gelec) becomes
unfavorable when using the average solvated structure as
the reference structure for conformational constraints. This
is due to the fact that the reference structure is not the average
bound structure, and the bound state differs substantially from
that found in the bulk. The free energy component from the
configurational constraint changes its sign to a negative value,
compensating for the unfavorable constraint of restraining
the ligand to the bulk-optimized conformation. Thus, by
using the average solvated structure as a reference structure,
we calculate the Gint(site) with an unfavorable bound
structure, and we must rely the Gconf(site) component to
correct the result. This is reflected by the standard mean
deviations of the Gconf (site). When the average bound

Table 3. Computed Binding Free Energy for the Clomipramine/LeuT Complex at Different Force Constants for the RMSD
Potentials, the Translational Restraint, and the Rotational Restrainta

kc:kt:ka Grepu (site) Gdisp (site) Gelec (site) -Gconst (site) -kBT ln(FtC0) -kBT ln(Fr) -Gconf (site) G0
tot (site) ∆G0

binding

10:10:200 30.0 ( 0.7 -54.6 ( 0.3 -48.7 ( 0.6 -3.0 ( 0.1 5.4 6.5 -0.5 ( 0.1 -64.9 ( 1.2 -13.6 ( 1.4
1:1:20 32.5 ( 0.8 -52.2 ( 0.5 -48.4 ( 0.6 -0.3 ( 0.1 3.2 4.3 -0.1 -61.0 ( 0.7 -13.3 ( 1.0
10:1:200 30.9 ( 1.2 -54.2 ( 0.5 -48.3 ( 0.3 -1.4 ( 0.1 4.4 6.2 -0.4 ( 0.1 -62.8 ( 1.0 -12.0 ( 0.5
10:10:20 32.2 ( 3.4 -53.8 ( 0.3 -48.9 ( 0.2 -0.4 ( 0.1 3.9 4.3 -0.5 -63.1 ( 3.2 -10.3 ( 2.1
1:10:200 32.2 ( 2.6 -53.8 ( 0.4 -49.1 ( 0.7 -1.6 ( 0.1 5.1 6.2 -0.1 -61.0 ( 3.2 -13.8 ( 3.1
100:100:2000 28.6 ( 1.0 -55.0 ( 0.4 -49.1 -4.3 ( 0.1 7.5 8.6 -47.4 ( 0.9 -111.1 ( 1.0 -18.3 ( 1.0
0:0:0 38.9 ( 1.7 -53.0 ( 0.3 -47.6 ( 0.4 N/A N/A N/A N/A -61.7 ( 2.2 -15.4 ( 1.8

a The values kc (in kcal/mol/Å2), kt (in kcal/mol/Å2), and ka (in kcal/mol/rad2) are the force constants for the RMSD potentials, the distance
force constant for the translational restraint, and the angle/dihedral force constant for the translational and rotational restraints, respectively.

Table 4. Absolute Free Energy of Binding for Clomipramine (C), Imipramine (I), and Desipramine (D) to LeuT in Reduced
GSBP Systema

Gpos

Grep Gdisp Gelec Gconst -kBT ln(FtC0) -kBT ln(Fr) Gconf Gtot

site C 36.5 ( 0.6 -54.2 ( 0.2 -48.9 ( 0.8 -3.0 ( 0.2 5.4 6.5 -10.7 ( 0.3 -68.4 ( 0.8
I 32.3 ( 1.3 -49.2 ( 0.1 -51.3 ( 0.5 -2.6 ( 0.1 5.4 6.4 -5.3 ( 0.3 -64.3 ( 1.6
D 30.3 ( 0.7 -51.7 ( 0.2 -52.2 ( 0.7 -2.6 ( 0.1 5.6 6.4 -5.1 ( 0.4 -69.3 ( 0.9

solv C 40.4 ( 0.3 -35.9 ( 0.3 -51.7 ( 0.1 N/A -3.5 ( 1.0 -50.7 ( 1.6
I 39.1 ( 0.6 -34.0 ( 0.2 -51.5 ( 0.1 N/A -4.4 ( 0.5 50.9 ( 0.3
D 36.7 ( 0.7 -32.6 ( 0.3 -56.0 ( 0.1 N/A -2.7 ( 0.2 -54.6 ( 0.6

bind-ing C -3.9 ( 0.9 -18.3 ( 0.4 2.7 ( 0.8 8.8 ( 0.2 -7.2 ( 0.8 -17.9 ( 1.5
I -6.7 ( 0.8 -15.2 ( 0.2 0.3 ( 0.4 9.3 ( 0.1 -0.9 ( 0.8 -13.2 ( 1.3
D -6.4 ( 0.4 -19.0 ( 0.3 3.9 ( 0.7 9.4 ( 0.1 -2.4 ( 0.4 -14.5 ( 1.3

a The average favorable solvated structures of the drugs are used as the reference structures for the site and hydration free energy
calculations. The numbers are reported in kcal/mol.
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structure is used, the standard deviation of Gconf(site) is 0.1
kcal/mol (Table 2), while when the favorable solvated
structure is used, the standard deviation of Gconf(site) is about
0.3-0.4 kcal/mol (Table 4). Contrary to this, by using the
average bound structure as a reference structure, we calculate
Gint(solv) with an unfavorable solvated structure, and we must
rely the Gconf(solv) component to correct the result. Since
we usually have a more restricted space for the ligand in
the binding pocket than in the bulk, Gconf(solv) should
converge better than Gconf(site) (i.e., more overlapping
between windows of umbrella sampling). Thus, using the
average bound structure as a reference would usually be a
better choice despite the fact that one could also get
reasonable results with the average solvated structure as a
reference.

To illustrate this compensation due to the use of different
reference structures, we have evaluated the potential of mean
force (PMF) as a function of the RMSD constraint. The
PMFs of the configurational restraints for clomipramine are
shown in Figure 6, where the reference structure of
the restraint is the average bound structure in (a) and the
average most probable solvated structure in (b). When the
average bound structure is the reference structure, the free
energy component resulting from the configurational restraint
(4.4 kcal/mol) can be understood by a comparison of the
site and solvent PMFs. The PMF of clomipramine in solvent
goes up to about 4.4 kcal/mol at a RMSD corresponding to
the minimum of the PMF in the binding site (∼0.2 Å).
Similarly, when the average most probable solvated structure
is the reference structure, the free energy component resulting
from the configurational restraint (-7.2 kcal/mol) can also
be intuitively understood. The PMF of clomipramine in the
binding site goes up to about 7 kcal/mol at a RMSD,
corresponding to the minimum of the PMF in solvent (∼0.7
Å). That is, in order to keep the configuration of bound
structure around its most probable solvated structure, a free
energy of 7 kcal/mol is required. Recently, Yang et al.
incorporated the ligand reorganization free energy emphasiz-
ing its importance and even occasionally dominant contribu-
tion to high-affinity binding. It was shown that accounting

for the free energy change for ligands between the free and
bound states leads to better binding affinity prediction and
enhanced the correlation coefficient for a number of studied
complexes.28 While they obtained the ligand reorganization
free energy in the frame of MM-GBSA (molecular mechan-
ics-generalized Born surface area), we want to point out here
that a similar free energy component due to the reorganiza-
tion of the ligand can also be robustly introduced within the
FEP/MD absolute binding free energy calculation scheme.

E. Sensitivity to Potential Parameters. There are typi-
cally no molecular models of drugs available for the study
of drug/protein binding free energy. For all-atom molecular
simulations, it is a common practice to get the equilibrium
structure from the crystal structure, and by using quantum
mechanical calculations, determine the atomic charges and/
or intramolecular potentials and obtain the remaining pa-
rameters from an available force field. An important concern
is the assignment of atomic charges. Deng et al.45 showed
that with CHARMM, CHELPG, and AMSOL,70 the calcu-
lated binding free energies could differ by about 3 kcal/mol
for aromatic molecules binding to the T4 Lysozyme L99A
mutant. In this report, we examine the dependence of
calculated binding free energies on two charge sets: one
initially guessed set based on CHARMM force field (CSinitial)
and one charge set obtained from the RESP scheme described
by Anisimov et al.61 (CSfitted). The method of charge fitting
for CSfitted is described in Section III. The atomic charges
for the two charge sets are listed in Table S2 in the
Supporting Information. The influence of using different
charge sets (CSfitted and CSinitial) was shown to be significant
when calculating the hydration free energies of the TCAs
(a difference of 6.2 kcal/mol for Gtot(solv) of DSI). On the
other hand, both sets produced similar binding free energies
for the ligands. Nevertheless, Table 2 shows that, from CSfitted

to CSinitial, the total binding free energy (in kcal/mol) changed
from -13.6 to -11.0 for CMI, from -13.4 to -10.0 for
IMI, and from -12.0 to -13.8 for DSI. For this particular
binding site and these ligands, the different charge sets
exhibit a difference up to 3.4 kcal/mol. Notably, the free
energy order also changes, now contradicting the experi-
mental results. Thus, for ligands without partial charge
parameters in the available force field, the derivation of
partial charges from high-level QM electrostatic potentials
is highly preferred for molecular models, and validation
against available experimental data is warranted.

F. Comparison between GSBP and PBC Simula-
tions. Relative Binding Free Energies of TCAs Binding
to LeuT. To compare possible artifacts due to reduction of
the system with the GSBP scheme, we performed atomistic
free energy simulations for the full system embedded into
lipid bilayer using the FEP technique. The relative binding
free energies can be calculated between two pairs: CMI/IMI
and IMI/DSI from FEP simulations or simply from differ-
ences in absolute binding free energies obtained with GSBP
simulations. The relative binding free energies between these
compounds are known, and thus it is possible to correlate
performance of two methods (GSBP and PBC) to experi-
mental data. The structural difference between CMI and IMI
is that the chlorine atom in CMI is replaced by a hydrogen

Figure 5. Column illustration of the binding free energy
components of CMI binding to LeuT calculated with the
average bound structure (blue) and the average favorable
solvated structure (green) as the configurational reference of
the RMSD constraint. From left to right: repulsive, dispersive,
electrostatic, positional (including translational and rotational
constraints), configurational, and total binding free energy.
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atom in IMI. The difference between IMI and DSI is an
addition of a methyl group on the tail (see Figure 2). The
results are shown in Figure 7. The relative free energy for
CMI to IMI is 6.0 kcal/mol for the bound state and 5.6 kcal/
mol for the unbound state (in bulk), leading to a relative
binding free energy of about 0.4 kcal/mol. The result is
remarkably comparable to the difference of the absolute
binding free energy of CMI to IMI, 0.2 kcal/mol obtained
from absolute binding free energy simulations. The relative
free energy for IMI to DSI is -16.5 and -17.5 kcal/mol for
the bound and unbound states, respectively, leading to a
relative binding free energy of 1.0 kcal/mol, which is also
comparable to the difference of the absolute binding free
energy of IMI to DSI of 1.4 kcal/mol. This, to some degree,
justifies the use of GSBP for the absolute binding free energy
calculations compared to the periodical boundary conditions
used in the relative binding free energy calculations. The
results are very interesting as one can use the more mature
relative binding free energy calculation to check the results
of absolute binding free energies when experimental binding
affinities are not available. It also suggests that the reduced
system provides an excellent and, more importantly, a
relatively cheap test ground for rapid evaluation of relative
free energies (for ranking of substrates). The thermodynamic
cycle can be applied as an assessment tool to further the
development of absolute binding free energy calculation
methodologies.

G. Implications for the Molecular Mechanism of
Antidepressant Binding to LeuT. Crystal structures of
TCA-bound LeuT2,3 show that the substrate and the drug
binding sites are quite close to each other, mainly separated
by a charged pair Arg 30 and Asp 404. Singh et al.
demonstrated that the binding of the substrate and CMI might
be thermodynamically coupled.2 To explore this possibility,
we calculated the absolute binding free energies of TCA’s
binding to LeuT without the bound leucine substrate. As
crystal structures for such systems are not directly available,
we obtained the starting structures by removing the substrates
from the TCA-bound LeuT (2Q6H, 2Q72, 2QB4 after step
B in section III) and allowing a further 2 ns relaxation and
equilibration of the structures. The results are presented in
Table 5. Generally, the binding free energies for all three
drugs decreases when the substrates are removed: from
-13.4 to -16.9 for CMI, from -13.2 to -15.0 for IMI,
and from -12.0 to -13.4 kcal/mol for DSI. For the most
bulky drug, CMI, the repulsive van der Waals (vdW)
interaction is the main reason for the more favorable binding
free energies. The free energy contribution due to repulsive
vdW interactions changes from -9.4 for the substrate-bound
LeuT (Table 2) to -17.0 kcal/mol for the substrate-free LeuT
(Table 5). One explanation is that the removal of the substrate
relaxes the protein structure, allowing for a more flexible
drug binding pocket, facilitating the binding of CMI. The
results here immediately infer that it is very difficult to
compare the computed free energies to their corresponding
experimental values, since experimental binding affinities
reflect the binding free energies of a combination of LeuT
with and without substrate.

Asp 401 is one of the key residues in the TCA binding
pocket of LeuT.2,3 The presence of the charge in this position
is preserved in several NSS transporters. It is sometimes
switched to a positively charged lysine or arginine and is
thought to be functionally important. Its negatively charged
side-chain carboxylate forms a salt bridge with the protonated
side-chain nitrogen atom (Figure 2) in the “tail” of the bound
TCAs.2,3 To quantify the contribution of this interaction, we
mutated the negatively charged Asp 401 to a positively
charged lysine residue using the SCWRL3.0 program71

Figure 6. PMF of the configurational restraints on clomipramine. The PMFs of clomipramine in the binding site (site), solvent
(solv), and vacuum (vac) are shown in magenta, blue, and green, respectively. The reference structure of clomipramine is the
average bound structure (a) and the average favorable solvating structure (b).

Figure 7. Free energy cycle of the binding of CMI, IMI, and
DSI to LeuT. The binding free energies of CMI (∆G(binding,
CMI)), IMI (∆G(binding, IMI)), and DSI (∆G(binding, DSI)) are
obtained from absolute binding free energy calculations. The
relative free energies (∆G(solv) and ∆G(binding)) are obtained
from relative binding free energy calculations. The numbers
are reported in kcal/mol.
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starting from the equilibrated, membrane embedded 2Q6H
structure. We thus obtained the D401K mutant of LeuT with
bound ions, substrate, and clomipramine. The calculated
absolute binding free energy for CMI binding to LeuT-
D401K is -9.9 kcal/mol with contributions of -17.2, -19.7,
13.2, 10.2, and 3.6 kcal/mol from the repulsive, dispersive,
electrostatic, translational, rotational, and configurational
components, respectively. Comparing CMI binding between
the mutant and wild-type systems, the loss in the electrostatic
interaction is 11.2 kcal/mol, primarily due to lack of
interaction between CMI’s fully protonated side-chain ni-
trogen atom and the negative side-chain of D401 residue in
the wild-type LeuT. This loss is only partially compensated
by the gains of -7.8 kcal/mol from the repulsive term. It
may be due to the fact that the loss of the salt bridge allows
CMI to rearrange in the binding pocket and avoid strong
repulsive interactions. It should be noted that the overall
effect of the mutation is a 3.7 kcal/mol less favorable for
binding. This result has recently received surprising support
from the combination of electrophysiological and biochemi-
cal studies on related GABA transporters. Cherubino et al.
have reported that charge-switching mutations of lysine at
the position 448 (K448E and K448D) that corresponds to
401 in LeuT lead to significant increase in the efficacy of
desipramine,72 further supporting functional role of negative
charge in this location for high-affinity antidepressant
binding.

V. Conclusion

In this report we used the free energy perturbation/molecular
dynamics (FEP/MD) method with constraints to calculate
the standard binding free energies for tricyclic antidepressant
(TCA) binding to LeuT. The computed binding free energies
are comparable to the experimental results. We showed that
restraining potentials are essential and robust for enhancing
sampling in studies of drugs binding to membrane proteins.
The choice of the magnitude of the restraining forces on
translation, rotation, and configuration are relatively robust
(within 2 kcal/mol), as long as extreme values are avoided.
For the configurational constraint, we tried two kinds of
reference structures: the average bound structure and the
average favorable solvated structure. It was shown that the
use of the bound structure as the reference structure produced
better results. Thus it is recommended for future applications
of the FEP/MD method for the evaluation of absolute binding
free energies. The use of the generalized solvent boundary
potential (GSBP) approximation for studies of drug binding
to membrane proteins also appears to be justified and

accurate. We also showed that developing the molecular
mechanics models (charge sets) for drugs using quantum
mechanical electrostatic potential maps provided better
accuracy. Interestingly, there is a notable compensation
observed in the binding free energies between both molecular
mechanics models. The absolute free energies (such as
hydration and binding free energies) may vary significantly
across models, while the relative binding free energies
between drugs differ only by a small amount across models.
This result is encouraging and in good agreement with similar
conclusions from discussions on ion-protein interactions and
force field development. We also showed that with the
current FEP/MD method for absolute binding free energy,
the results are compatible with those from the relative binding
free energy calculations. We propose that the application of
the free energy cycle can be applied to assess new methods
of absolute binding free energy calculations. Finally, we
showed that the absolute binding free energies for TCAs
binding to LeuT are slightly different in the substrate-bound
and substrate-free situations, indicating substrate-drug cou-
pling as proposed by Singh et al.2,3 Consistent with experi-
mental indication, our FEP/MD calculation of the absolute
binding free energy showed that the D401K mutation impairs
the binding of clomipramine to LeuT, proving the essential
role of the salt bridge between D401 of LeuT and the
protonated nitrogen in the “tail” of the TCAs. In conclusion,
this report shows that the use of the FEP/MD method for
calculating absolute free energies of drugs bound to mem-
brane proteins is a promising tool that can be used for drug
design.
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Table 5. Absolute Free Energy of Binding for Clomipramine (C), Imipramine (I), and Desipramine (D) to Substrate-Free
LeuT in Reduced GSBP System

Gpos

Grep Gdisp Gelec Gconst -kBT ln(FtC0) -kBT ln(Fr) Gconf Gtot

site C 23.1 ( 1.0 -51.7 ( 0.5 -49.4 ( 0.2 -1.7 ( 0.1 5.3 6.5 -0.5 ( 0.1 -68.5 ( 1.1
I 31.6 ( 1.8 -48.5 ( 0.6 -57.2 ( 0.3 -2.2 ( 0.1 5.5 6.4 -1.6 ( 0.1 -66.0 ( 1.7
D 25.9 ( 0.9 -47.8 ( 0.6 -53.8 ( 0.3 -2.1 ( 0.1 5.4 6.4 -1.9 ( 0.3 -67.9 ( 0.4

binding C -17.0 ( 1.6 -16.8 ( 0.7 1.0 ( 0.3 10.0 ( 0.1 5.9 ( 0.8 -16.9 ( 1.5
I -6.9 ( 2.2 -14.8 ( 0.7 -5.8 ( 0.3 9.7 ( 0.1 2.8 ( 0.7 -15.0 ( 2.1
D -10.9 ( 0.7 -15.7 ( 0.4 2.2 ( 0.2 9.7 ( 0.1 1.3 ( 0.5 -13.4 ( 0.8
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pramine. RESP (CSfitted) and initial (CSinitial) partial charges
for clomipramine, imipramine, and desipramine. Figure
shows the binding pocket before and after the interactions
between clomipramine (CMI) and the environment are fully
turned off. This material is available free of charge via the
Internet at http://pubs.acs.org.
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Abstract: The cyclic, trans, and cis BNNO molecules and the two isomerization reactions on
their doublet electronic states potential energy surface (PES) are systematically investigated.
Ab initio self-consistent field, complete active space self-consistent field, coupled cluster with
single and double excitations (CCSD), and CCSD including perturbative triple excitations
[CCSD(T)] quantum mechanical techniques are employed, in conjunction with Dunning’s
correlation consistent polarized valence basis sets (cc-pVXZ and aug-cc-pVXZ, where X ) D,
T, and Q). All stationary points located on the doublet PES lie within 19 kcal mol-1 of the global
minimum cyclic isomer at the aug-cc-pVQZ CCSD(T) level of theory. The cyclic and trans minima
are separated by 2.4 kcal mol-1 with an interconversion barrier (cyclic f TS2 f trans) of 18.3
kcal mol-1; the trans and cis isomers are separated by 10.4 kcal mol-1 with a barrier (trans f
TS1 f cis) of 10.4 kcal mol-1. The dissociation energies BNNO (X̃ 2A′) f B (2Pu) + NNO (X̃
1Σ+) for the cyclic, trans, and cis isomers are predicted to be 39.7, 37.3, and 27.0 kcal mol-1,
respectively. The diatomic fragment dissociation energies BNNO (X̃ 2A′)f BN (X 3Π) + NO (X
2Σ+) for the three isomers are determined to be 50.7, 48.4, and 38.0 kcal mol-1, respectively.
Additionally, fundamental vibrational frequencies are computed for the cyclic and trans isomers
through application of second-order vibrational perturbation theory (VPT2) at the cc-pCVTZ
CCSD(T) level of theory. Comparison of the resulting vibrational frequencies and their isotopic
shifts with those determined experimentally by Wang and Zhou yields the surprising result that
the B (2Pu) + NNO (X̃ 1Σ+) reaction leads to formation of the trans isomer. The latter structure
is not the global minimum, rather the second lowest lying isomer. This apparent disparity is
rationalized by detailed examination of the PES describing this reaction.

Introduction
In the past few decades, boron nitrides have attracted much
attention since they have various technical applications in
nuclear technology and in the semiconductor and steel
industries, taking advantage of their mechanical, thermal, and
electrical properties as well as their chemical inertness.1,2

For the amount of energy stored in a given system or region
of space per unit volume, or per unit mass, boron is well-
known for its high energetic density, among many kinds of
propellant additives.3 Therefore, boron has potential applica-
tions as an advanced fuel in propulsion systems.4 During
the burning of boron-containing propellants, some portions

of boron are oxidized to boron oxide releasing a large amount
of energy, while some boron nitride (BN) is formed.5,6

As an important molecule in atmospheric chemistry,
nitrous oxide (N2O) has also received considerable attention
and interest. In the chemical industry, nitrous oxide is an
effective oxidation agent.7-23 Many experiments indicate that
nitrous oxide is also important in the thermal decomposition
of various propellants.3 N2O is often used as a catalytic
species for burn-rate modification of nitramine propellants
as well.24,25

The reaction of boron and nitrous oxides and the resulting
intermediate generation is an intriguing topic. In 2007, Wang
and Zhou reported a combined matrix isolation infrared (IR)
spectroscopic and theoretical study of the BNNO and AlNNO* E-mail: sch@uga.edu.
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molecules.26 The BNNO and AlNNO molecules were
prepared via the reactions of laser-evaporated boron and
aluminum atoms with nitrous oxide (N2O) in solid argon and
were identified on the basis of isotopically substituted IR
absorptions as well as theoretical (density functional theory)
calculations. From codeposition of laser-evaporated isotopic-
enriched 10B atoms with 0.5% N2O in argon matrix, a group
of new IR absorptions at 1837.0, 1502.3, 838.2, and 633.8
cm-1 were observed, along with strong N2O absorptions.
These four absorptions were assigned to the B-N stretching
(1837.0 cm-1), N-O stretching (1502.3 cm-1), N-N
stretching (838.2 cm-1), and in-plane bending (633.8 cm-1)
modes of the 10BNNO molecule.26 The experiment was
repeated with naturally abundant boron atoms, yielding
absorptions at 1795.7, 1500.3, 836.5, and 626.9 cm-1 with
IR intensities approximately four times stronger than the
above-mentioned absorptions. The latter vibrational features
were assigned to the corresponding modes of the 11BNNO
molecule. In order to confirm their findings, Wang and Zhou
carried out B3LYP density functional theory (DFT) com-
putations with the 6-311+G* basis set; the BNNO molecule
was predicted to have a 2A′ ground electronic state with a
planar trans structure.

Wang, Li, Zhang, Sheng, and Yu reported a theoretical
study of boron nitride (BN) generated from the boron atom
and several nitrogen oxides.3 BN is one of the products
formed in the burning of a boron-containing propellant.
Possible mechanisms for the reactions of boron and nitrogen
oxides (NO, NO2, and N2O) were investigated using the G2-
MP2 method. The reactions of the ground-state boron atom
B (2Pu) with nitrogen oxides were determined to be endo-
thermic, while the reactions of an excited quartet state of
the boron atom B (4Pg) and nitrogen oxides are exothermic,
and the BN product can be formed. For the BN formation
reaction B (4Pg) + N2Of BN + NO, two trans and two cis
forms of the BNNO molecule were located on the quartet
potential energy surface (PES). Among the four, one trans
and one cis form were found as the reaction intermediates,
and the other trans and cis BNNO structures were character-
ized as transition states from the intermediates to the final
products (BN + NO).

In this study we make the first attempt to theoretically
interpret the experimentally observed vibrational frequencies
by explicitly considering the effects of anharmonicity.
Furthermore, we extend the previous studies of the PES by
employing significantly more reliable methodologies and
reveal a previously neglected isomer which, surprisingly, is
revealed to be the global minimum.

Theoretical Methods

In this work, six correlation-consistent basis sets cc-pVXZ
and aug-cc-pVXZ, where X ) D, T, and Q, developed
by Dunning and co-workers27,28 were employed. Ab initio
theoretical techniques included restricted open-shell
Hartree-Fock (ROHF), unrestricted Hartree-Fock (UHF),
complete active space self-consistent field (CASSCF),29,30

spin-unrestricted coupled cluster with single and double
excitations (UCCSD),31,32 and UCCSD with perturbative
triple excitations [UCCSD(T)].33-35 For the unrestricted

coupled cluster computations, an ROHF reference wave
function was used to control spin contamination. Com-
putations were performed with the Molpro program suite,36

the Mainz-Austin-Budapest (MAB) version of the AC-
ESII program suite,37,38 and PSI339 quantum chemistry
packages.

The four core orbitals (1s-like orbitals of B, N, and O)
were frozen in all correlated calculations. The T1 diagnostic
values40 of the five stationary points are 0.027 (cyclic
isomer), 0.022 (trans isomer), 0.035 (cis isomer), 0.032
(TS1), and 0.034 (TS2) at the cc-pVQZ UCCSD(T) opti-
mized geometries. Analytic and numerical gradient methods
were used to optimize geometries and to determine the dipole
moments, harmonic vibrational frequencies, and associated
IR intensities. Vibrational anharmonicities were computed
by application of second-order perturbation theory41-48

(VPT2) to the quartic force field. The Grendel49 program
was used to compute the force constants in internal coordi-
nates, while Intder200550-54 was used to perform the
nonlinear transformation of the force constants from the
internal to Cartesian coordinates. The Anharm53,55 program
was adopted for the VPT2 analysis.

Results and Discussion

A. CASSCF Wave Functions. The electron configura-
tions of the linear NNO (X̃ 1Σ+) and the cyclic, trans, and
cis BNNO isomers as well as the two isomerization reaction
transition states (TS1 and TS2) connecting them are shown
in the Supporting Information, Table S1. The five highest-
lying occupied molecular orbitals (MO) of the five stationary
points of BNNO molecule and the linear NNO molecule are
depicted in the Supporting Information, Figures S1-S6.57

In order to analyze correlation effects on the geometrical
parameters and physical properties, full valence (19e/16MO)
cc-pVQZ CASSCF wave functions were constructed for the
five stationary points at the cc-pVQZ UCCSD(T) optimized
geometries. There are 17 705 688 configuration state func-
tions (CSFs) in Cs point group symmetry. Furthermore, since
multireference character might be present, given the mod-
erately large T1 diagnostics, we will examine the contribu-
tions of the reference wave function and the important excited
configurations. Therefore, the CI coefficients based on natural
orbitals (NOs), presented in the Supporting Information,
Table S2, are employed in the following discussion.

For cyclic BNNO, the (2a′′)2 f (3a′′)2 double excitation
provides the most significant correction to the reference
configuration. For trans BNNO, the three most significant
contributions to the CASSCF wave function come from the
(2a′′)2 f (3a′′)2, (11a′)2 f (13a′)2, and (1a′′)2 f (4a′′)2

double excitations relative to the reference configuration. A
major contribution to the CASSCF wave function for the
cis isomer comes from the (13a)2f (15a)2 double excitation.
Similar to the cis isomer, the primary contribution to the
CASSCF wave function of TS1 comes from the (13a)2 f
(15a)2 double excitation, and the two important additional
contributions are the (12a)2 f (16a)2 and (11a)(13a) f
(14a)(15a) double excitations. It should be noted that the
CI coefficient of the reference configuration for the TS1
transition state (C1 ) 0.912) is the same as the cis isomer
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but smaller than those for the cyclic and trans isomers. For
TS2, three important double excitations, (2a′′)2 f (3a′′)2,
(11a′)2(12a′) f (11a′)(12a′)(13a′), and (11a′)2 f (13a′)2

contribute to the CASSCF wave function. The CI coefficient
of the reference configuration for the TS2 transition state
(C1 ) 0.914) is smaller than those of the cyclic and trans
isomers, as a result of the elongated bonds in the transition
state. Despite the significant presence of some excited
configurations, the reference CI coefficients should be large
enough in all cases for the single reference coupled cluster
theory to be reliable.

B. Geometries. The optimized geometries for the five
stationary points of the BNNO molecule are presented in
Figure 1 and the Supporting Information, Table S3. In the
following discussion we used the most reliable aug-cc-pVQZ
CCSD(T) geometries for all species, with the exception of
TS1, for which we encountered difficulties. Notwithstanding
the change (0.5°) in θe(BNN) for the cis isomer, which has
a very flat potential surface, it is evident from the Supporting
Information, Table S3 that the aug-cc-pVQZ and cc-pVQZ
geometries are nearly identical. In part for this reason, it was
decided not to further pursue the aug-cc-pVQZ CCSD(T)
geometry for TS1; instead we performed a single-point
energy computation at this level of theory using the cc-pVQZ
CCSD(T) geometry, anticipating negligible error in the
resulting barrier height.

The re(BN) bond distances in the five stationary points of
the BNNO molecule are all predicted to be 1.417-1.437 Å,
except for the trans minimum. These 1.4 Å values are very
close to those of the boron- and nitrogen-containing three-
membered rings from Richard and Ball’s theoretical work58

[1.410 Å for both trans and cis diazaboridine and 1.420 Å
for boradiazirine computed at the 6-31G(d,p) B3LYP level],
in which B-N is a single bond. The trans BNNO isomer
has the shortest BN-bond distance of 1.257 Å, which may
be attributed to the two BN π-bonding (out-of-plane 2a′′ and
in-plane 11a′ MO) orbitals shown in the Supporting Infor-
mation, Figure S2. This bond length is shorter than those
for BN (X 3Π) (1.330 Å), which is considered to have the
character between a double and a triple bond, and BN (a
1Σ+) (1.277 Å),59 which is considered as a triple bond.

The N-N bond distances of the cyclic and trans minima
are 1.351 and 1.373 Å, respectively, much longer than those
of isolated nitrous oxide (N-N triple bond56 1.129 Å) and
diazene (N-N double bond 1.252 Å), much shorter than
those of cis diazaboridine (1.585 Å)58 and hydrazine (1.460
Å),60 and close to that predicted for boradiazirine (1.300 Å)58

at the B3LYP 6-31G(d,p) level. Therefore, the NN bonds in
the cyclic and trans isomers fall between single and double
bonds. For the cis minimum and the TS1 transition state,
the N-N bond lengths are very close to diazene.

All of the O-N bond distances fall in the range
1.181-1.201 Å for the five stationary points. These values
are much longer than that for (X 2Π) diatomic nitric oxide
(1.153 Å). Except for TS2, the O-N bond distances of the
other four stationary points are also slightly longer than that
for N2O (1.188 Å).

The equilibrium bond angle θe (BNN) of the trans isomer
is predicted to be the largest, around 164°, which suggests
near sp hybridization for the B and N atoms. On the other
hand, the bond angle θe (NNO) of the trans isomer is
determined to be the smallest among the five stationary

Figure 1. The optimized geometries (Å and °) of the five stationary point structures of BNNO at the aug-cc-pVQZ CCSD(T)
level of theory. τ (BNNO) for the cis BNNO isomer is 38.8°, and τ for TS1 is 80.4°. The TS1 geometrical parameters are at the
cc-pVQZ CCSD(T) level of theory.
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points, about 114°, indicating something between sp2 and
sp3 N and O hybridization. For the cis isomer, the bond
angles θe (BNN) and θe (NNO) are predicted to be 137.4°
and 134.7°, respectively. These geometrical features indicate
a combination of sp and sp2 hybridization for the B and N
atoms and the same type of hybridization for the O and N
atoms in the cis isomer.

C. Intrinsic Reaction Coordinate (IRC). Intrinsic reac-
tion coordinate (IRC) analyses61-64 are commonly used to
ascertain the nature of transition states; this requires locating
a reaction coordinate, which is achieved by following
appropriately mass-weighted energy gradients. The torsional
motion that connects the cis and trans BNNO isomers has
an extremely flat potential in the vicinity of the transition
states, as exemplified by the small cis BNNO-TS1 separa-
tion of just 0.06 kcal mol-1; this makes gradient-following
algorithms susceptible to numerical error. Instead, we manu-
ally varied the torsional angle, which is the primary contribu-
tor to the reaction coordinate, relaxing all other degrees of
freedom to construct a potential energy curve at the cc-pVTZ
CCSD(T) level of theory. This analysis, which is displayed
in Figure 2, shows that the cis isomer does not reside in a
deep enough potential well to be feasibly isolable and that
its formation would immediately be followed by isomeriza-
tion to trans BNNO. The region of Figure 2 around the C1

cis BNNO minimum reveals that equilibrium structure of
this isomer is ill-defined, as isomerization between the two
equivalent C1 minima occurs through a Cs symmetry transi-
tion state that is almost isoenergetic.

The transition state connecting the cyclic and trans BNNO
minima is much more well-defined, and its cc-pVDZ MP2
IRC is plotted in Figure 3. For the forward reaction (cyclic
f TS2 f trans), the BN3N2 bond angle (see Figure 1 for

atom numbering) of the cyclic isomer gradually opens up
and the NN bond distance decreases toward TS2. At the
transition state, the BN2 bond distance [1.839 Å with the
aug-cc-pVQZ CCSD(T) method] is significantly elongated
compared to that (1.437 Å with the same method) of the
cyclic isomer. From the transition state (TS2) to the trans
isomer, there is a cleavage of the BN2 bond, followed by
shortening of the BN3 bond distance.

D. Relative Energies. The relative energies of the five
stationary points are presented in Table 1. At the SCF level
of theory, the trans isomer is predicted to be the energetically
lowest-lying isomer. However, at the coupled cluster levels
of theory, the cyclic isomer is found to be the global
minimum on the ground-state surface. With the aug-cc-pVQZ
CCSD(T) method, the trans BNNO structure is predicted to
be higher in energy than the cyclic minimum, by 3.5 kcal
mol-1 [2.4 kcal mol-1 with zero-point vibrational energy
(ZPVE) correction], but lower in energy than the cis isomer
by 10.6 kcal mol-1 (10.4 kcal mol-1 with ZPVE). The
schematic PES at this level is shown in Figure 4.

The barrier height for the forward cyclic-trans isomer-
ization reaction (cyclicf TS2f trans) is determined to be
19.7 kcal mol-1 (18.3 kcal mol-1 with ZPVE), while the
reaction barrier for the reverse reaction (trans f TS2 f
cyclic) is predicted to be 16.2 kcal mol-1 (15.9 kcal mol-1

with ZPVE). Since the isomerization barrier heights are
relatively high, the reaction may not happen at an appreciable
rate in an argon matrix at 12K and would be highly
dependent upon boron tunneling. This cyclic-trans isomer-
ization reaction will be addressed again later in the manuscript.

The reaction barrier for the forward trans rotational (out-
of-plane) isomerization reaction (trans f TS1 f cis) was
predicted to be 10.8 (10.4) kcal mol-1. On the other hand,

Figure 2. Relaxed potential energy curve for BNNO, plotted as a function of the torsional angle τ (BNNO), at the cc-pVTZ
CCSD(T) level of theory.
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there is almost no barrier [0.2 kcal mol-1 (0.0 kcal mol-1

with ZPVE correction)] for the reverse isomerization reaction
(cisf TS1f trans). Consequently, the existence of the cis
isomer in a solid argon matrix (at 12K) seems questionable.

E. Dissociation Energies. The two BNNO dissociation
limits at the aug-cc-pVQZ CCSD(T) level of theory are
shown schematically in Figure 4.

1. BNNO (X̃ 2A′) f B (2Pu) + NNO (X̃ 1Σ+). The
dissociation energies BNNO (X̃ 2A′) f B (2Pu) + NNO (X̃
1Σ+) for the three BNNO isomers are presented in Table 2.
With the aug-cc-pVQZ basis set the dissociation energy
(ZPVE corrected values in parentheses) for the cyclic
minimum is predicted to be 30.5 (28.5) (SCF), 38.3 (36.2)
(CCSD), and 41.3 (39.7) kcal mol-1 [CCSD(T)]. For the
trans isomer, the three corresponding values are 34.0 (32.8)
(SCF), 36.8 (35.6) (CCSD), and 37.8 (37.3) kcal mol-1

[CCSD(T)], while those for the cis isomer are 11.9 (11.3)
(SCF), 23.6 (23.4) (CCSD), and 27.3 (27.0) kcal mol-1

[CCSD(T)]. With inclusion of correlation effects, the dis-
sociation energies increase relative to the SCF method by
11.2 (cyclic), 4.5 (trans), and 15.7 (cis) kcal mol-1,
respectively. The cis isomer is more favored energetically
by correlation effects compared those of the two dissociation
products. It is seen that the B (2Pu) + NNO (X̃ 1Σ+)
dissociation pathways are endothermic for all three BNNO
isomers (see Figure 4).

2. BNNO (X̃ 2A′) f BN (X 3Π) + NO (X 2Σ+). The
dissociation energies BNNO (X̃ 2A′) f BN (X 3Π) + NO
(X 2Σ+) for the three BNNO isomers are reported in Table
2. The dissociation energy with the ZPVE correction for the
cyclic minimum is 13.6 (SCF), 44.6 (CCSD), and 50.7 kcal
mol-1 [CCSD(T)]. For the trans isomer, the dissociation

Figure 3. Intrinsic reaction coordinate (IRC) for the cyclic-trans isomerization reaction of BNNO at the cc-pVDZ MP2 level of
theory.

Table 1. Relative Energies of Five Stationary Points on the PES for the BNNO Molecule at SCF, CCSD, and CCSD(T)
Levels of Theorya

level of theory cyclic trans cis TS1 TS2

cc-pVTZ SCF 0.00 (0.00) -3.76 (-4.61) 17.94 (16.50) 19.50 (17.55) 18.43 (16.64)
aug-cc-pVTZ SCF 0.00 (0.00) -3.35 (-4.19) 18.67 (17.22) 20.22 (18.25) 18.49 (16.70)
cc-pVQZ SCF 0.00 (0.00) -3.59 (-4.44) 18.58 (17.13) 20.11 (18.14) 18.51 (16.72)
aug-cc-pVQZ SCF 0.00 (0.00) -3.48 (-4.34) 18.76 (17.31) 20.28 (18.31) 18.54 (16.75)

cc-pVTZ CCSD 0.00 (0.00) 1.11 (0.15) 13.34 (11.50) 13.80 (12.31) 19.04 (17.14)
aug-cc-pVTZ CCSD 0.00 (0.00) 1.52 (0.58) 14.11 (12.24) 14.60 (13.10) 19.56 (17.66)
cc-pVQZ CCSD 0.00 (0.00) 1.48 (0.52) 14.64 (12.76) 15.09 (13.57) 20.21 (18.29)
aug-cc-pVQZ CCSD 0.00 (0.00) 1.52 (0.58) 14.84 (12.96) 15.30 (13.79) 20.38 (18.47)

cc-pVTZ CCSD(T) 0.00 (0.00) 3.22 (1.82) 12.81 (11.42) 12.91 (11.54) 18.49 (17.04)
aug-cc-pVTZ CCSD(T) 0.00 (0.00) 3.50 (2.33) 13.44 (12.00) 13.57 (12.16) 18.97 (17.53)
cc-pVQZ CCSD(T) 0.00 (0.00) 3.51 (2.33) 13.96 (12.61) 14.09 (12.65) 19.57 (18.09)
aug-cc-pVQZ CCSD(T) 0.00 (0.00) 3.50 (2.35) 14.10 (12.76) 14.25 (12.82)b 19.74 (18.27)

a Relative energies are in kcal mol-1. ZPVE corrected values are in parentheses. b ZPVE values computed at the cc-pVQZ CCSD(T)
level of theory.
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energy is determined to be 17.9 (SCF), 44.0 (CCSD), and
48.4 kcal mol-1 [CCSD(T)], whereas that for the cis isomer
is -3.6 (SCF), 31.8 (CCSD), and 38.0 kcal mol-1 [CCS-
D(T)] with the aug-cc-pVQZ basis set. For the three
equilibrium structures, the increases of the dissociation
energies with inclusion of correlation effects are 37.1 (cyclic),
30.5 (trans), and 41.6 (cis) kcal mol-1, respectively. These
BN (X 3Π) + NO (X 2Σ+) dissociation reactions are
thermodynamically disfavored relative to the B (2Pu) + NNO
(X̃ 1Σ+) pathway discussed above (see Figure 4).

F. Dipole Moments. The dipole moments for the five
stationary points are presented in the Supporting Information,
Tables S6-S10. For the three equilibrium structures, the
dipole moments are predicted to be 1.90 (cyclic), 2.27 (trans),
and 1.16 (cis) debye at the aug-cc-pVTZ CCSD(T) (CCSD
for cis) level of theory. The trans isomer has the largest dipole
moment, with the expected sign +BNNO- .

G. Harmonic Vibrational Frequencies. The harmonic
vibrational frequencies for the five stationary points of the
BNNO molecule at the aug-cc-pVQZ CCSD(T) level of
theory are reported in Table 3 and in the Supporting
Information, Tables S6-S10. The four-highest frequencies

are predicted to be 1712, 1298, 1013, and 859 cm-1 for the
cyclic minimum and 1876, 1544, 874, and 646 cm-1 for the
trans isomer, while they are 1641, 1368, 1011, and 679 cm-1

for the cis isomer.
The corresponding experimentally observed (fundamental)

frequencies are 1795.7, 1500.3, 836.5, and 626.9 cm-1 for
the 11BNNO isotopologue.65 Among three isomers, four
vibrational frequencies of the 11BNNO isotopologue for the
trans isomer are most consistent with Wang and Zhou’s
experimental values. A more detailed comparison of the
theoretical fundamental frequencies with Wang and Zhou’s
experimental observations will be given in Section I.

H. Infrared (IR) Intensities. The IR intensities of the
six vibrational modes for three equilibrium isomers are
presented in the Supporting Information, Tables S6-S10.
From the IR spectra of Wang and Zhou,65 the IR intensities
(Is) for the four observed modes for the trans isomer were
concluded to be in the order I2 (NO stretching) > I3 (NN
stretching) > I1 (BN stretching) > I4 (in-plane bending). This
experimental ordering is well reproduced for the trans isomer
using the CCSD(T) level of theory (see Table S7 in the
Supporting Information), even within the double harmonic
approximation.

I. Anharmonic Vibrational Frequencies and Isotopic
Shifts. In Table 4, the fundamental vibrational frequencies
for the 10B14N14NO isotopologue as well as the respective
isotopic shifts of 11B14N14NO and 10B15N15NO are presented.
The anharmonic vibrational frequencies are determined via
VPT2 theory using our cc-pCVTZ CCSD(T) quartic force
field. For the 10B14N14NO trans isotopologue, the deviations
between theoretical harmonic and experimental fundamental
frequencies of the four modes are +85, +50, +28, and +11
cm-1, respectively. On the other hand, the corresponding
differences between theoretical anharmonic and experimental
fundamental frequencies for the trans isomer are +36, +28,
-6, and -15 cm-1. The improvement in the agreement with

Figure 4. Stationary points on the BNNO PES at the aug-cc-pVQZ CCSD(T) level of theory. Relative energies are in kcal
mol-1 (ZPVE corrected values in parentheses).

Table 2. Dissociation Energies of the BNNO (X̃ 2A′) f B
(2Pu) + NNO (X̃ 1Σ+) and BNNO (X̃ 2A′) f BN (X 3Π) +
NO (X 2Σ+) Channels at the SCF, CCSD, and CCSD(T)
Levels of Theory with the aug-cc-pVQZ Basis Seta

level of theory cyclic trans cis

BNNO (X̃ 2A′) f B (2Pu) + NNO (X̃ 1Σ+)
aug-cc-pVQZ SCF 30.50 (28.45) 33.95 (32.75) 11.91 (11.32)
aug-cc-pVQZ CCSD 38.27 (36.17) 36.77 (35.60) 23.58 (23.35)
aug-cc-pVQZ CCSD(T) 41.27 (39.65) 37.81 (37.33) 27.30 (27.02)

BNNO (X̃ 2A′) f BN (X 3Π) + NO (X 2Σ+)
aug-cc-pVQZ SCF 17.58 (13.55) 21.03 (17.86) - 1.00 (- 3.57)
aug-cc-pVQZ CCSD 48.34 (44.61) 46.84 (44.04) 33.65 (31.79)
aug-cc-pVQZ CCSD(T) 54.22 (50.67) 50.75 (48.35) 40.25 (38.04)

a Dissocation energies in kcal mol-1 and ZPVE corrected
values are in parentheses.
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inclusion of theoretical anharmonic effects is evident.
However, the disagreement between experiment is unusually
large for such a reliable level of theory. Of course, the
theoretical results are directly comparable only to gas-phase
experiments, not matrix isolation results.

From the experimental observations, the 1837 cm-1

transition exhibits the largest isotopic shift for 11B (41 cm-1)
and 15N (28 cm-1), since it is primarily a B-N stretching
mode. The 1502 cm-1 frequency shows a very small 11B
shift (2 cm-1) but quite a large nitrogen isotopic shift (26
cm-1), consistent with its assignment as the N-O stretching
mode. The 838 cm-1 absorption shows almost no change
among boron isotopes but exhibits a large nitrogen isotopic
shift (23 cm-1) and is, therefore, attributed to the N-N
stretching mode.

For the global minimum cyclic isomer, the B-N stretching
mode exhibits a large B isotopic shift (28 cm-1) and a N
isotopic shift (19 cm-1). In the case of the trans isomer, the
N-O and N-N stretching modes have almost no shift within
B isotopes but quite large N isotopic shifts (27 and 22 cm-1

for the N-O and N-N stretches, respectively). Our fre-
quency shifts upon isotopic substitution for the trans isomer
are in good agreement with the experimentally observed
values, in contrast to those for the cyclic global minimum;
this indicates that the trans isomer was observed in the
experiment.

J. Trans or Cyclic Structure? Our theoretical investiga-
tion clearly shows that the cyclic isomer is the global
minimum, but the vibrational frequencies and isotopic shifts
thereof provide compelling evidence for the experimental
observation of the trans isomer. To gain some insight into
the conformational preferences of the reaction, we con-
structed a two-dimensional energetic contour plot with
respect to the boron-atom position, constraining the NNO
moiety to its isolated (X̃ 1Σ+) geometry and enforcing
planarity. The cc-pVDZ CASSCF method with a (7, 7) active
space was used in order to describe the various bonding
schemes encountered on the resulting PES, which is shown
in Figure 5. The area in the immediate vicinity of the
molecule is repulsive within the constraints imposed, but
crucially the region around the N terminus is less repulsive
than that around the central nitrogen atom, favoring the
formation of trans over cyclic BNNO. This feature may be
explained from the NNO molecular orbitals shown in the
Supporting Information, Figure S6. The 7σ MO of NNO
mainly consists of the lone-pair orbital of the terminal N
atom. The electropositive B atom, therefore, may be prone
to approach the electron-rich terminal N atom along the NNO
molecular axis.

Clearly, as the reaction proceeds, the NNO angle must
decrease, so an analogous plot was generated (Figure 6) with
the NNO geometry chosen as [re(NO) ) 1.30 Å, re(NN) )
1.20 Å, θe ) 123.0°] to represent a compromise between
the NNO geometries adopted in the cyclic and trans isomers.
The relaxation of the NNO unit changes the qualitative nature

Table 3. Theoretical Predictions of the Total Energy, Harmonic Vibrational Frequencies, And Zero-Point Vibrational Energy
For the 2A′ Cyclic, Trans, Cis, TS1, and TS2 11B14N14NO Molecule at the aug-cc-pVQZ CCSD(T) Level of Theorya

structure total energy ω1(a′) ω2(a′) ω3(a′) ω4(a′) ω5(a′) ω6(a′′) ZPVE

cyclic -209.134170 1712 1298 1013 859 517 511 8.45
trans -209.128591 1876 1544 874 646 149 137 7.30
cis -209.111697 1641 1368 1011 679 189 85 7.11
TS1 -209.111462 (1675) (1420) (990) (651) (204) (100i) (7.06)
TS2 -209.102719 1866 1234 1005 431 348 691i 6.98

a Total energy is in hartree, harmonic vibrational frequency (ω) is in cm-1, and ZPVE is in kcal mol-1. For TS1, the total energy is the
single-point energy with cc-pVQZ CCSD(T) optimized geometry, and harmonic vibrational frequencies and ZPVE are computed at the
cc-pVQZ CCSD(T) level.

Table 4. Fundamental Vibrational Frequencies for the
BNNO Molecule and the Corresponding Shifts upon
Isotopic Substitution at the cc-pCVTZ CCSD(T) Level of
Theorya

mode (sym.) ν10B14N14NO ∆(ν11B14N14NO) ∆(ν10B15N15NO)

Experimentb

B-N stretch 1837 41 28
N-O stretch 1502 2 26
N-N stretch 838 1 23
bending 634 7 9

Trans BNNO
B-N stretch 1873 41 30
N-O stretch 1530 2 27
N-N stretch 832 1 22
bending 619 8 10

Cyclic BNNO
B-N stretch 1305 28 19
N-O stretch 1684 15 34
N-N stretch 982 18 16
bending 830 6 16

a Fundamental vibrational frequencies are in cm-1, and the
corresponding shifts are denoted as ∆. The experimental results
are shown for comparison purposes. b Ref 26.

Figure 5. PES (in kcal mol-1 and Å units) describing the B
(2Pu) + NNO (X̃ 1Σ+) (linear) reaction at the cc-pVDZ CASSCF
(7, 7) level of theory. See text for details.
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of the potential, introducing two bound minima. The
minimum corresponding to the cyclic structure, although
deeper than the trans minimum, has a relatively small area,
which translates into a relatively low capture cross section
for boron atoms leading to cyclic BNNO formation. Although
this analysis is quite crude, it offers insight into the basins
of attraction on the B + NNO PES.

Concluding Remarks

Ab initio molecular electronic structure theory has been
employed in order to investigate the cyclic, trans, and cis
isomers of BNNO and the two isomerization reactions
connecting them. At our highest level of theory, aug-cc-
pVQZ CCSD(T), the trans isomer was predicted to be 3.5
kcal mol-1 (2.4 kcal mol-1 with the ZPVE correction) higher
than the cyclic minimum. The barrier height for the uphill
isomerization reaction (cyclic f trans) is determined to be
19.7 (18.3) kcal mol-1. The trans and cis isomers are
separated by 10.6 (10.4) kcal mol-1 with a barrier (trans f
TS1 f cis) of 10.8 (10.4) kcal mol-1, which indicates that
the trans f cis isomerization reaction is unlikely to occur
in an argon matrix. Theoretically computed harmonic and
anharmonic vibrational frequencies and associated IR inten-
sities are consistent with the experimental observation of
trans BNNO in an argon matrix. The dissociation energies
(with ZPVE corrections) associcated with BNNO (X̃ 2A′)f
B (2Pu) + NNO (X̃ 1Σ+) for the cyclic, trans, and cis isomers
were predicted to be 39.7, 37.3, and 27.0 kcal mol-1, while
the diatomic fragment dissociation energies BNNO (X̃ 2A′)
f BN (X 3Π) + NO (X 2Σ+) for the three isomers were
determined to be 50.7, 48.4, and 38.0 kcal mol-1, respec-
tively. Therefore, the three equilibrium structures are well
below the dissociation limits to [B (2Pu) + NNO (X̃ 1Σ+)]
and [BN (X 3Π) + NO (X 2Σ+)]. There are no bonding
regions with the NNO fragment constrained (linear) to its
native geometry; its geometry must relax for the B (2Pu) +
NNO (X̃ 1Σ+) association to proceed. Two distinct bonding
regions are found on the relaxed (bent) surface. The first

leads to formation of the trans isomer, this region being much
broader but less deep than that leading to formation of cyclic
BNNO. The larger capture cross section due to the broader
trans well appears to explain the experimental observation
of only the higher energy trans isomer.
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Erratum

Implementation and Performance of DFT-D with
Respect to Basis Set and Functional for Study of
Dispersion Interactions in Nanoscale Aromatic
Hydrocarbons. [J. Chem. Theory Comput. 4, 2030–
2048 (2008)]. By Roberto Peverati and Kim K. Baldridge*.

Page 2046. A typographical error occurred in Table 9 of
this manuscript with the s6 values of the B2PLYP DFT
functional. Values reported as 1.55 should be 0.55, as also
correctly reported in the original Figure 4, and the associated
analysis in the main text.
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Published on Web 05/13/2010

Table 9. Summary of Density Functional Plus sR/s6 Coefficient Combinations Proposed for a Variety of Basis Sets, As
Determined from Predictions of S22 Complexes

DFT functional basis set sR value optimized s6 value MAD (kcal/mol)

B97D cc-pVDZ 1.1 1.00 1.075
cc-pVDZ+CP 1.1 1.39 0.518
cc-pVTZ 1.1 1.18 0.337
cc-pVTZ+CP 1.1 1.41 0.454
cc-pVQZ 1.1 1.26 0.330
cc-pVQZ+CP 1.1 1.39 0.441
TZV(2d,2p) 1.1 1.25 0.375
TZV(2d,2p)+CP 1.1 1.38 0.425

B3LYP cc-pVDZ 1.1 0.73 1.709
cc-pVTZ 1.1 0.88 0.853
cc-pVQZ 1.1 0.96 0.612

PBE cc-pVDZ 1.1 0.50 2.579
cc-pVTZ 1.1 0.64 1.030
cc-pVQZ 1.1 0.65 0.798

revPBE cc-pVDZ 1.1 1.66 0.826
cc-pVTZ 1.1 1.87 1.326
cc-pVQZ 1.1 1.90 1.536
cc-pVTZ (8-22) 1.1 1.87 0.393
cc-pVQZ (8-22) 1.1 1.90 0.355

B2PLYP cc-pVDZ 1.3 0.55 1.394
cc-pVTZ 1.3 0.55 0.517
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